赫亚庆, 张新燕, 王维庆, 李佳蓉, 赵晨欢, 王海云. 基于新能源消纳的高温电解制氢系统建模与控制方法研究[J]. 太阳能学报, 2024, 45(1): 484-491. DOI: 10.19912/j.0254-0096.tynxb.2022-1483
引用本文: 赫亚庆, 张新燕, 王维庆, 李佳蓉, 赵晨欢, 王海云. 基于新能源消纳的高温电解制氢系统建模与控制方法研究[J]. 太阳能学报, 2024, 45(1): 484-491. DOI: 10.19912/j.0254-0096.tynxb.2022-1483
He Yaqing, Zhang Xinyan, Wang Weiqing, Li Jiarong, Zhao Chenhuan, Wang Haiyun. RESEARCH ON MODELING AND CONTROL METHOD OF HIGH-TEMPERATURE ELECTROLYTIC HYDROGEN PRODUCTION SYSTEM BASED ON NEW ENERGY ABSORPTION[J]. Acta Energiae Solaris Sinica, 2024, 45(1): 484-491. DOI: 10.19912/j.0254-0096.tynxb.2022-1483
Citation: He Yaqing, Zhang Xinyan, Wang Weiqing, Li Jiarong, Zhao Chenhuan, Wang Haiyun. RESEARCH ON MODELING AND CONTROL METHOD OF HIGH-TEMPERATURE ELECTROLYTIC HYDROGEN PRODUCTION SYSTEM BASED ON NEW ENERGY ABSORPTION[J]. Acta Energiae Solaris Sinica, 2024, 45(1): 484-491. DOI: 10.19912/j.0254-0096.tynxb.2022-1483

基于新能源消纳的高温电解制氢系统建模与控制方法研究

RESEARCH ON MODELING AND CONTROL METHOD OF HIGH-TEMPERATURE ELECTROLYTIC HYDROGEN PRODUCTION SYSTEM BASED ON NEW ENERGY ABSORPTION

  • 摘要: 基于新能源随机波动以及低温电解制氢系统转化效率较低且无法切换到发电状态,提出一种高温电解制氢变负载情形下的高效最大产氢点多模型优化控制方法。首先构建计及辅助设备在内的高温固体氧化物电解系统整体协同运行的多能耦合优化模型,分析其影响系统电解的工作温度、电流强度、物料流速等诸多因素并导出高能安全产氢率;其次,在PID控制的基础上,给出一种既能实现变负荷同步准确跟踪产氢轨迹和优化电网调控需求,又能最大优化产氢效率的自适应时变线性变参数模型预测控制方法;最后,通过算例仿真验证所提方法较PID控制电解系统升温速率快,过渡时间短,电解电流、水蒸气流速、H2流速、电炉功率都能平稳过渡至稳态点,具有一定的理论和实用价值。

     

    Abstract: Based on the random fluctuation of new energy sources and the low conversion efficiency of the low-temperature electrolytic hydrogen production system and the inability to switch to the power generation state,an efficient multi model optimal control method for maximum hydrogen production points under the variable load condition of high-temperature electrolytic hydrogen production is proposed.Firstly,a multi-energy coupling optimization model for the overall coordinated operation of the high-temperature solid oxide electrolysis system including auxiliary equipment is constructed,and many factors affecting the working temperature,current intensity,material flow rate and other factors of the system electrolysis are analyzed,and the high-energy safe hydrogen production rate is derived. Secondly,on the basis of PID control,an adaptive time-varying linear variable parameter model predictive control method is proposed,which can not only realize synchronous and accurate tracking of hydrogen production trajectory and optimize the power grid regulation demand,but also maximize the hydrogen production efficiency. Finally,an example is given to verify that the proposed method has faster temperature rise rate and shorter transition time than the PID control electrolysis system,and the electrolysis current,steam flow rate,hydrogen flow rate and electric furnace power can all smoothly transition to the steady point,which has certain theoretical and practical value.

     

/

返回文章
返回