柳英洲, 施伟, 李颖, 周利, 王滨, 李昕. 基于CEM-FEM耦合方法的海上风力机抗冰和振动控制研究[J]. 太阳能学报, 2024, 45(1): 179-187. DOI: 10.19912/j.0254-0096.tynxb.2022-1448
引用本文: 柳英洲, 施伟, 李颖, 周利, 王滨, 李昕. 基于CEM-FEM耦合方法的海上风力机抗冰和振动控制研究[J]. 太阳能学报, 2024, 45(1): 179-187. DOI: 10.19912/j.0254-0096.tynxb.2022-1448
Liu Yingzhou, Shi Wei, Li Ying, Zhou Li, Wang Bin, Li Xin. RESEARCH ON ICE-RESISTANT AND VIBRATION CONTROL OF MONOPILE OFFSHORE WIND TURBINE BASED ON CEM-FEM METHOD[J]. Acta Energiae Solaris Sinica, 2024, 45(1): 179-187. DOI: 10.19912/j.0254-0096.tynxb.2022-1448
Citation: Liu Yingzhou, Shi Wei, Li Ying, Zhou Li, Wang Bin, Li Xin. RESEARCH ON ICE-RESISTANT AND VIBRATION CONTROL OF MONOPILE OFFSHORE WIND TURBINE BASED ON CEM-FEM METHOD[J]. Acta Energiae Solaris Sinica, 2024, 45(1): 179-187. DOI: 10.19912/j.0254-0096.tynxb.2022-1448

基于CEM-FEM耦合方法的海上风力机抗冰和振动控制研究

RESEARCH ON ICE-RESISTANT AND VIBRATION CONTROL OF MONOPILE OFFSHORE WIND TURBINE BASED ON CEM-FEM METHOD

  • 摘要: 冰荷载是影响海上风力机安全运行的重要决定性因素,严重时会致使海上风力机结构发生冰激振动破坏和冰激疲劳失效。该研究基于粘聚单元(cohesive element method,CEM)-有限元(finite element method,FEM)耦合方法,通过非线性分布弹簧考虑桩-土相互作用,建立海冰-寒区单桩海上风力机结构在风-冰联合作用下的整体耦合冰激振动非线性有限元模型。进而,基于非线性数值仿真工具LS-DYNA,分别模拟冰与直立结构和带有抗冰锥的基础结构相互作用过程,并与现有的挤压和弯曲冰力模型进行对比,验证该研究模拟动冰荷载的准确性,讨论两种冰破坏模式下动冰荷载的变化规律。最后,为解决海上风力机发生的强烈冰激振动问题,分别采用振动控制方法和施加抗冰锥的方式,开展风、冰联合作用下海上风力机动冰力和动力响应研究,对比分析以上两种减振方式的减振机理和减振效果差异。结果表明,虽然抗冰锥可明显降低冰-海上风力机相互作用的动冰荷载幅值,然而采用振动控制策略的海上风力机减振效果明显优于抗冰锥。因此,在海上风力机的冰激结构损伤研究和抗冰设计中必须分别考虑以上两种减振方式对结构的影响。

     

    Abstract: Ice loads are an important and decisive factor affecting the safe operation of offshore wind turbines. In severe cases,it shall lead to ice-induced vibration damage and ice-induced fatigue failure of offshore wind turbine structures. Based on the cohesive element method(CEM)and finite element method(FEM)and considering the pile-soil interaction through nonlinear distributed springs,a nonlinear finite element model of the fully ice-monopile offshore wind turbine structures in sea ice-cold regions is established.Furthermore,based on the numerical simulation tool LS-DYNA,the interaction process of ice with the vertical structure and the supporting structure with ice-breaking cones are simulated respectively,and compared with the ice force model proposed in the specifications to verify the accuracy of the simulated dynamic ice loads. Finally,the vibration control method and the ice-breaking method are used to study the dynamic response of offshore wind turbines under the combined action of wind and ice,and the differences between the both vibration reduction methods were compared. The results show that the cohesive element method adopted in this paper can well simulate the crushing and bending failure processes of sea ice. Meanwhile,the vibration reduction effect of the offshore wind turbine using the vibration control strategy is better than that of applying the ice-breaking method.

     

/

返回文章
返回