王冉冉, 高慧敏, 张昕宇. 基于GA-GRU神经网络的光伏MPPT算法[J]. 太阳能学报, 2023, 44(9): 212-219. DOI: 10.19912/j.0254-0096.tynxb.2022-1254
引用本文: 王冉冉, 高慧敏, 张昕宇. 基于GA-GRU神经网络的光伏MPPT算法[J]. 太阳能学报, 2023, 44(9): 212-219. DOI: 10.19912/j.0254-0096.tynxb.2022-1254
Wang Ranran, Gao Huimin, Zhang Xinyu. MPPT ALGORITHM FOR PHOTOVOLTAICS BASED ON GA-GRU NEURAL NETWORK[J]. Acta Energiae Solaris Sinica, 2023, 44(9): 212-219. DOI: 10.19912/j.0254-0096.tynxb.2022-1254
Citation: Wang Ranran, Gao Huimin, Zhang Xinyu. MPPT ALGORITHM FOR PHOTOVOLTAICS BASED ON GA-GRU NEURAL NETWORK[J]. Acta Energiae Solaris Sinica, 2023, 44(9): 212-219. DOI: 10.19912/j.0254-0096.tynxb.2022-1254

基于GA-GRU神经网络的光伏MPPT算法

MPPT ALGORITHM FOR PHOTOVOLTAICS BASED ON GA-GRU NEURAL NETWORK

  • 摘要: 针对外界环境因素快速变化时,光伏发电系统难以保持在最大功率点输出的问题,提出遗传算法与GRU神经网络相结合的最大功率跟踪算法(GA-GRU-MPPT)。该算法在构建的最大功率点预测模型基础上,采用遗传算法对GRU神经网络的参数进行优化。考虑到数据的关联性,将前一时刻的太阳电池温度、太阳辐照度、最大功率点电压及当前时刻的太阳电池温度和太阳辐照度作为预测模型的输入变量,输出为当前时刻的最大功率点电压。针对3种不同气候情形的仿真结果表明,该算法跟踪精度可达99%,能显著提高光伏系统的能量转换效率。

     

    Abstract: This paper proposes a maximum power point tracking algorithm that combines genetic algorithm and GRU neural network(GA-GRU-MPPT)to address the problem of photovoltaic power generation systems struggling to maintain maximum power point output in the face of rapidly changing external environmental factors. Based on the constructed maximum power point prediction model,this algorithm optimizes the parameters of the GRU neural network using genetic algorithm. Considering the correlation of the data,the previous moment’s solar cell temperature,solar irradiance,maximum power point voltage,as well as the current moment’s solar cell temperature and solar irradiance,are taken as input variables for the prediction model,with the output being the current moment’s maximum power point voltage. Simulation results for three different climate scenarios show that the tracking accuracy of this algorithm can reach99%,significantly improving the energy conversion efficiency of solar photovoltaic systems.

     

/

返回文章
返回