陈海永, 袁乐, 王世杰, 赵参参. 基于多尺度编码互补注意力网络的光伏缺陷检测[J]. 太阳能学报, 2023, 44(10): 191-197. DOI: 10.19912/j.0254-0096.tynxb.2022-0966
引用本文: 陈海永, 袁乐, 王世杰, 赵参参. 基于多尺度编码互补注意力网络的光伏缺陷检测[J]. 太阳能学报, 2023, 44(10): 191-197. DOI: 10.19912/j.0254-0096.tynxb.2022-0966
Chen Haiyong, Yuan Le, Wang Shijie, Zhao Shenshen. PHOTOVOLTAIC DEFECT DETECTION BASED ON MULTI-SCALE CODING COMPLEMENTARY ATTENTION NETWORK[J]. Acta Energiae Solaris Sinica, 2023, 44(10): 191-197. DOI: 10.19912/j.0254-0096.tynxb.2022-0966
Citation: Chen Haiyong, Yuan Le, Wang Shijie, Zhao Shenshen. PHOTOVOLTAIC DEFECT DETECTION BASED ON MULTI-SCALE CODING COMPLEMENTARY ATTENTION NETWORK[J]. Acta Energiae Solaris Sinica, 2023, 44(10): 191-197. DOI: 10.19912/j.0254-0096.tynxb.2022-0966

基于多尺度编码互补注意力网络的光伏缺陷检测

PHOTOVOLTAIC DEFECT DETECTION BASED ON MULTI-SCALE CODING COMPLEMENTARY ATTENTION NETWORK

  • 摘要: 由于光伏组件的电致发光(EL)缺陷存在微小、微弱的特点,导致EL图像缺陷检测是一项具有挑战性的任务,因此,提出多尺度编码互补注意力网络(MCECAN)。MCECAN的主干和预测头遵从YOLO系列设计,网络颈部应用多尺度编码互补注意力模块(MCECAM)。该模块前端利用多尺度编码器聚合多尺度信息、增强全局信息,后端互补坐标注意力建立特征图通道间的依赖关系,突出缺陷特征并抑制背景干扰,提高网络对微小、微弱目标的检测能力。在包含5537张EL图像的数据集上,该方法取得了优秀的检测性能。

     

    Abstract: The defect detection for photovoltaic module electroluminescence images is a challenging task,due to two difficulties,tiny and weak. To address this problem,the Multi-Scale Encoding Complementary Attention Network(MCECAN) is designed. The backbone and prediction head of MCECAN follow the YOLO series design,but the network neck applies the Multi-Scale Coding Complementary Attention Module(MCECAM). The front-end of the module uses a multi-scale encoder to aggregate multi-scale information and enhance global information. The back-end complementary coordinate attention establishes the dependency between feature map channels,highlights defect features,suppresses background interference,and improves the ability of network to detect tiny and weak targets. On a dataset containing 5537 EL defect images,the MCECAN shows the best detection performance.

     

/

返回文章
返回