郭海宇, 张英豪, 刘颖明, 王晓东, 朱若男. 基于动力学模型和多种群遗传算法的漂浮式风电机组调谐质量阻尼器参数优化[J]. 太阳能学报, 2023, 44(11): 217-223. DOI: 10.19912/j.0254-0096.tynxb.2022-0964
引用本文: 郭海宇, 张英豪, 刘颖明, 王晓东, 朱若男. 基于动力学模型和多种群遗传算法的漂浮式风电机组调谐质量阻尼器参数优化[J]. 太阳能学报, 2023, 44(11): 217-223. DOI: 10.19912/j.0254-0096.tynxb.2022-0964
Guo Haiyu, Zhang Yinghao, Liu Yingming, Wang Xiaodong, Zhu Ruonan. OPTIMIZATION DESIGN OF TUNED MASS DAMPER FOR FLOATING WIND TURBINES BASED ON DYNAMIC MODEL AND MULTIPLE POPULATION GENETIC ALGORITHM[J]. Acta Energiae Solaris Sinica, 2023, 44(11): 217-223. DOI: 10.19912/j.0254-0096.tynxb.2022-0964
Citation: Guo Haiyu, Zhang Yinghao, Liu Yingming, Wang Xiaodong, Zhu Ruonan. OPTIMIZATION DESIGN OF TUNED MASS DAMPER FOR FLOATING WIND TURBINES BASED ON DYNAMIC MODEL AND MULTIPLE POPULATION GENETIC ALGORITHM[J]. Acta Energiae Solaris Sinica, 2023, 44(11): 217-223. DOI: 10.19912/j.0254-0096.tynxb.2022-0964

基于动力学模型和多种群遗传算法的漂浮式风电机组调谐质量阻尼器参数优化

OPTIMIZATION DESIGN OF TUNED MASS DAMPER FOR FLOATING WIND TURBINES BASED ON DYNAMIC MODEL AND MULTIPLE POPULATION GENETIC ALGORITHM

  • 摘要: 针对5 MW ITI Barge型漂浮式风电机组,该文利用动力学模型和多种群遗传算法配合寻求机舱中调谐质量阻尼器(TMD)各参数最优解。首先,基于拉格朗日方程建立含TMD的风电机组动力学模型,采用列文伯格-马夸尔特(LM)算法对模型中未知参数辨识;其次,以塔架纵向位移标准差为目标函数,采用多种群遗传算法和动力学模型配合对TMD各参数寻优。最后,按照最优解重新设计TMD参数,分别在5种典型风浪组合载荷工况下,利用FAST全耦合模型验证TMD的减载效果。结果显示:优化参数后的TMD能够有效降低Barge型漂浮式风电机组的关键部位的疲劳载荷。对比无TMD控制时,塔架纵向位移标准差降低约6%~48%;塔根纵向弯矩标准差降低约10%~45%;叶根纵向弯矩标准差降低约11%~33%。

     

    Abstract: For the 5 MW ITI Barge floating wind turbine,this paper utilizes the dynamic model and multi-population genetic algorithm to determine the optimal values of each parameter of Tuned mass damper(TMD)in nacelle. To begin with,the Lagrange equation was employed to establish the dynamic model of the turbine incorporating TMD,followed by the utilization of the Levenberg-Marquardt(LM)algorithm to identify the unknown parameters within the dynamic model. Subsequently,the optimization of TMD parameters was carried out using a multi-population genetic algorithm and dynamic model,with the objective function being the standard deviation of the tower’s vertical displacement. Finally,TMD parameters were redesigned according to the optimal solution,and the load reducing effect of TMD was verified by the full coupled FAST model under five typical wind-wave combined load conditions. The results show that the TMD with optimized parameters could effectively reduce the fatigue load of the Barge floating turbine. In comparison to the control scenario without TMD,the utilization of TMD results in a reduction of approximately 6% to 48% in the standard deviation of the tower longitudinal displacement. Similarly,the standard deviation of the tower root longitudinal bending moment decreases by approximately10% to 45%. The standard deviation of blade root longitudinal bending moment decreases by about 11%-33%.

     

/

返回文章
返回