周颖, 袁梓桐, 陈海永, 王世杰. 融合元学习和双路径注意力的太阳电池缺陷生成[J]. 太阳能学报, 2023, 44(9): 85-93. DOI: 10.19912/j.0254-0096.tynxb.2022-0806
引用本文: 周颖, 袁梓桐, 陈海永, 王世杰. 融合元学习和双路径注意力的太阳电池缺陷生成[J]. 太阳能学报, 2023, 44(9): 85-93. DOI: 10.19912/j.0254-0096.tynxb.2022-0806
Zhou Ying, Yuan Zitong, Chen Haiyong, Wang Shijie. DEFECT GENERATION OF SOLAR CELLS BY FUSION OF META-LEARNING AND DUAL-PATH ATTENTION[J]. Acta Energiae Solaris Sinica, 2023, 44(9): 85-93. DOI: 10.19912/j.0254-0096.tynxb.2022-0806
Citation: Zhou Ying, Yuan Zitong, Chen Haiyong, Wang Shijie. DEFECT GENERATION OF SOLAR CELLS BY FUSION OF META-LEARNING AND DUAL-PATH ATTENTION[J]. Acta Energiae Solaris Sinica, 2023, 44(9): 85-93. DOI: 10.19912/j.0254-0096.tynxb.2022-0806

融合元学习和双路径注意力的太阳电池缺陷生成

DEFECT GENERATION OF SOLAR CELLS BY FUSION OF META-LEARNING AND DUAL-PATH ATTENTION

  • 摘要: 针对太阳电池缺陷图像数据少导致深度学习模型过拟合,从而造成小样本缺陷检测困难的问题,该文提出一种融合元学习和双路径注意力的生成对抗网络(MAGAN)作为数据增强策略。所设计的元学习调参模块(MTM)优化生成器中权重参数;所设计的双路径注意力模块(DPAT)在特征提取过程中更关注图像中微小微弱缺陷特征;在改进网络构架的同时提出一种聚类约束损失函数解决训练过程中梯度消失问题。实验和研究结果表明,所提方法能够针对小样本缺陷生成有效目标数据集并优于其他生成对抗网络,最后通过分类准确率验证了该网络的有效性。

     

    Abstract: Due to over-fitting of deep learning models brought on by the absence of picture data containing solar cell defects,few-shot defect identification has become challenging. As a method of enhancing the data,this study proposes employing meta-attention generative adversarial networks(MAGAN),which incorporate meta-learning and dual-path attention. The dual-path attention module(DPAT)is designed to pay more attention to the small and faint defect features in the image during the feature extraction process. A clustering constrained loss function is proposed to solve the gradient disappearance problem during the training process while improving the network architecture. The meta-learning tuning module(MTM)is designed to optimize the weight parameters in the generator. The study and experiment discoveries demonstrate that the suggested strategy outperforms previous generative adversarial networks and may produce useful target datasets for modest sample faults.

     

/

返回文章
返回