孙玲俊, 毛经宇, 刘坤. FAGAN:一种基于模型迁移与注意力机制的太阳电池缺陷图像对抗生成方法[J]. 太阳能学报, 2023, 44(9): 78-84. DOI: 10.19912/j.0254-0096.tynxb.2022-0754
引用本文: 孙玲俊, 毛经宇, 刘坤. FAGAN:一种基于模型迁移与注意力机制的太阳电池缺陷图像对抗生成方法[J]. 太阳能学报, 2023, 44(9): 78-84. DOI: 10.19912/j.0254-0096.tynxb.2022-0754
Sun Lingjun, Mao Jingyu, Liu Kun. FAGAN :AN ADVERSARIAL GENERATION METHOD OF SOLAR CELLS DEFECT IMAGE BASED ON MODEL TRANSFER AND ATTENTION MECHANISM[J]. Acta Energiae Solaris Sinica, 2023, 44(9): 78-84. DOI: 10.19912/j.0254-0096.tynxb.2022-0754
Citation: Sun Lingjun, Mao Jingyu, Liu Kun. FAGAN :AN ADVERSARIAL GENERATION METHOD OF SOLAR CELLS DEFECT IMAGE BASED ON MODEL TRANSFER AND ATTENTION MECHANISM[J]. Acta Energiae Solaris Sinica, 2023, 44(9): 78-84. DOI: 10.19912/j.0254-0096.tynxb.2022-0754

FAGAN:一种基于模型迁移与注意力机制的太阳电池缺陷图像对抗生成方法

FAGAN :AN ADVERSARIAL GENERATION METHOD OF SOLAR CELLS DEFECT IMAGE BASED ON MODEL TRANSFER AND ATTENTION MECHANISM

  • 摘要: 缺陷微小微弱、数据样本规模不足等是制约太阳电池质量检测技术快速发展的瓶颈问题。因此,该文提出一种用于生成太阳电池缺陷图像的生成对抗网络模型FAGAN。该方法先在源域公开道路数据集上进行模型预训练提取跨域底层视觉特征,以提升FAGAN在目标域生成缺陷形式的多样性;然后设计了有效通道空间注意力ECSA,在空间与通道两个维度对缺陷特征进行增强,以提升微小微弱缺陷生成样本的质量。实验结果表明:该文提出的方法所生成的太阳电池缺陷图像的性能评价指标FID优于现有的梯度惩罚Wasserstein距离生成对抗网络(WGAN-GP)、深度卷积生成对抗网络(DCGAN)、循环生成对抗网络(CycleGAN)和样式生成对抗网络(StyleGAN)。

     

    Abstract: Small and weak defects and insufficient dataset are the bottlenecks problems which restrict the rapid development of solar cells quality detection technology. Therefore,this paper proposes FAGAN for generating defect images of solar cells. This method firstly performs model pre-training on the source domain open road dataset to extract cross-domain underlying visual features,so as to improve the diversity of defect forms generated by FAGAN on the target domain;then,ECSA is designed to enhance the defect features in two dimensions of space and channel,so as to improve the quality of small and weak defect samples. The experiments show that the FID of the solar cell defect images generated by the proposed method is better than those of the existing gradient penalty Wasserstein distance generative adversarial network(WGAN-GP),deep convolution generative adversarial network(DCGAN),cycle generative adversarial network(CycleGAN)and style generative adversarial network(StyleGAN).

     

/

返回文章
返回