李翠明, 徐龙儿, 王龙, 王华, 申涛. 基于空间金字塔模型的DCA特征融合地形分类[J]. 太阳能学报, 2023, 44(9): 334-339. DOI: 10.19912/j.0254-0096.tynxb.2022-0727
引用本文: 李翠明, 徐龙儿, 王龙, 王华, 申涛. 基于空间金字塔模型的DCA特征融合地形分类[J]. 太阳能学报, 2023, 44(9): 334-339. DOI: 10.19912/j.0254-0096.tynxb.2022-0727
Li Cuiming, Xu Longer, Wang Long, Wang Hua, Shen Tao. DCA FEATURE FUSION TERRAIN CLASSIFICATION BASED ON SPATIAL PYRAMID MODEL[J]. Acta Energiae Solaris Sinica, 2023, 44(9): 334-339. DOI: 10.19912/j.0254-0096.tynxb.2022-0727
Citation: Li Cuiming, Xu Longer, Wang Long, Wang Hua, Shen Tao. DCA FEATURE FUSION TERRAIN CLASSIFICATION BASED ON SPATIAL PYRAMID MODEL[J]. Acta Energiae Solaris Sinica, 2023, 44(9): 334-339. DOI: 10.19912/j.0254-0096.tynxb.2022-0727

基于空间金字塔模型的DCA特征融合地形分类

DCA FEATURE FUSION TERRAIN CLASSIFICATION BASED ON SPATIAL PYRAMID MODEL

  • 摘要: 针对空间金字塔视觉词袋模型对地形图像分类时忽略颜色信息、纹理表达不明显及特征维度高等问题,提出一种基于空间金字塔模型的DCA特征融合地形分类方法。该方法优化传统空间金字塔模型子区域划分方式,提取地形图像优化后的SPM-BOVW特征、HSV特征、LBP特征;通过DCA算法构建3组变换特征;采用串联将变换特征进行融合。实验结果表明,以融合特征作为支持向量机(SVM)分类器的输入,利用网格参数寻优,最终获得了较高的地形分类精度,说明所提方法在太阳能电站的地形图像分类上具有较好的鲁棒性。

     

    Abstract: Aiming at the problem that the spatial pyramid bag of visual words model does not express clearly the terrain texture of terrain,the color information of the terrain is ignored and high feature dimension,a DCA feature fusion terrain classification algorithm based on the spatial pyramid bag of visual words model is proposed. This method optimizes the sub-region division method of the traditional spatial pyramid model,extracts the optimized SPM-BOVW features,HSV features,and LBP features of the terrain image;constructs three sets of transformation features through the DCA algorithm;and fuses the transformation features in series. The experimental results show that taking the fused features as the input of support vector machines(SVM)classifier and optimizing through grid parameters,a high accuracy of terrain classification is finally obtained,which shows that the proposed algorithm has good robustness in the terrain classification of solar power station.

     

/

返回文章
返回