罗颖, 刘雨辰, 米立华, 韩艳, 王力东, 姜言. 基于WRF模拟和注意力机制的短期风速预测[J]. 太阳能学报, 2023, 44(9): 302-310. DOI: 10.19912/j.0254-0096.tynxb.2022-0686
引用本文: 罗颖, 刘雨辰, 米立华, 韩艳, 王力东, 姜言. 基于WRF模拟和注意力机制的短期风速预测[J]. 太阳能学报, 2023, 44(9): 302-310. DOI: 10.19912/j.0254-0096.tynxb.2022-0686
Luo Ying, Liu Yuchen, Mi Lihua, Han Yan, Wang Lidong, Jiang Yan. SHORT-TERM WIND SPEED FORECAST BASED ON WRF SIMULATION AND ATTENTION MECHANISM[J]. Acta Energiae Solaris Sinica, 2023, 44(9): 302-310. DOI: 10.19912/j.0254-0096.tynxb.2022-0686
Citation: Luo Ying, Liu Yuchen, Mi Lihua, Han Yan, Wang Lidong, Jiang Yan. SHORT-TERM WIND SPEED FORECAST BASED ON WRF SIMULATION AND ATTENTION MECHANISM[J]. Acta Energiae Solaris Sinica, 2023, 44(9): 302-310. DOI: 10.19912/j.0254-0096.tynxb.2022-0686

基于WRF模拟和注意力机制的短期风速预测

SHORT-TERM WIND SPEED FORECAST BASED ON WRF SIMULATION AND ATTENTION MECHANISM

  • 摘要: 提出一种结合中尺度数值天气预报(WRF)模式和注意力机制(AM)的短期风速预测模型。首先,利用WRF模式模拟多维数据,包括风速、风向、温度和湿度,作为后续算法的输入变量。其次,利用变分模态分解将WRF风速误差及其他相关气象因素分解成不同频率的子模态分量,降低原始数据的复杂性和非平稳特征。随后,使用自适应网格搜索算法对添加注意力机制的双向门限循环单元进行模型结构参数优化。最后,基于所提模型预测误差修正WRF风速。通过算例分析,所提模型在单步和多步预测中精度均优于对比模型,证明了模型的优越性。

     

    Abstract: A short-term wind speed forecast model combining the weather research and forecast(WRF)and attention mechanism is proposed. Firstly,the WRF model is applied to simulate multiple data,including wind speed,wind direction,temperature,and humidity,which are regarded as input variables of the subsequent algorithm. Secondly,the errors of the wind speeds resulting from WRF and the other related variables are decomposed into sub-modal components with various frequencies by the variational mode decomposition(VMD)algorithm to reduce the complexity and non-stationary feature of the raw data. Thirdly,as for Bi-directional Gate Recurrent Unit(BIGRU)with attention mechanism(AM),the adaptive grid search algorithm is adopted for the parameter optimization of the model structure. Finally,based on the proposed model,the errors are forecasted to correct the simulated wind speed of WRF.Through the analysis of examples,the accuracy of the proposed model is better than that of the comparative models in single-step and multi-step forecast,which proves the superiority of the model.

     

/

返回文章
返回