李贝, 田德, 唐世泽, 陶立壮, 吴晓璇, 刘枫. 超大型风电机组叶片颤振分析及参数灵敏度研究[J]. 太阳能学报, 2023, 44(9): 295-301. DOI: 10.19912/j.0254-0096.tynxb.2022-0669
引用本文: 李贝, 田德, 唐世泽, 陶立壮, 吴晓璇, 刘枫. 超大型风电机组叶片颤振分析及参数灵敏度研究[J]. 太阳能学报, 2023, 44(9): 295-301. DOI: 10.19912/j.0254-0096.tynxb.2022-0669
Li Bei, Tian De, Tang Shize, Tao Lizhuang, Wu Xiaoxuan, Liu Feng. FLUTTER ANALYSIS AND PARAMETER SENSITIVITY STUDY OF ULTRA-LARGE WIND TURBINE BLADES[J]. Acta Energiae Solaris Sinica, 2023, 44(9): 295-301. DOI: 10.19912/j.0254-0096.tynxb.2022-0669
Citation: Li Bei, Tian De, Tang Shize, Tao Lizhuang, Wu Xiaoxuan, Liu Feng. FLUTTER ANALYSIS AND PARAMETER SENSITIVITY STUDY OF ULTRA-LARGE WIND TURBINE BLADES[J]. Acta Energiae Solaris Sinica, 2023, 44(9): 295-301. DOI: 10.19912/j.0254-0096.tynxb.2022-0669

超大型风电机组叶片颤振分析及参数灵敏度研究

FLUTTER ANALYSIS AND PARAMETER SENSITIVITY STUDY OF ULTRA-LARGE WIND TURBINE BLADES

  • 摘要: 以IEA 15 MW参考风电机组为研究对象,基于修正的极坐标网格叶素动量理论与Timoshenko梁模型,建立叶片气弹耦合分析模型,综合时域和频域方法,分析超大型风电机组叶片失控状态下的气弹稳定性。结果表明,叶片发生颤振失稳,临界颤振速度为13.06 r/min,颤振频率为3.68 Hz,颤振模态主导振型为三阶向前挥舞模态伴随一阶向前扭转模态。此外,定量分析临界颤振速度对于空气密度、叶片质量、截面重心、挥舞刚度和扭转刚度变化的灵敏度。分析表明,扭转刚度是影响临界颤振速度的主导因素,通过减少叶片质量和前移截面重心,增大挥舞刚度和扭转刚度,可提高颤振裕度。采用高空气密度的设计条件,可获得更保守的设计额定转速。

     

    Abstract: Taking the IEA wind 15MW reference wind turbine as the research object,the aeroelastic coupling analysis model of the blade is established based on the modified blade element momentum theory on a polar grid and Timoshenko beam model. And the aeroelastic stability of the ultra-long blades is studied in the runaway situation by combining time-domain and frequency-domain methods. The results show that the blade flutter occurs when the critical rotor speed is 13.06 r/min,and the flutter frequency is 3.68 Hz,whose dominant mode shapes are the third-order forward flapwise mode and the first-order forward torsional mode. Besides,the sensitivities of critical flutter speed to air density,blade mass,section center of gravity,flapwise stiffness,and torsional stiffness are quantitatively analyzed. As a result,it is demonstrated that torsional stiffness is the dominant factor affecting the critical flutter speed,and the flutter margin can be improved by reducing the blade mass,shifting the cross-sectional center of gravity forward,and increasing the flapwise and torsional stiffness. In addition,it can obtain a more conservative design-rated rotor speed by considering high air density.

     

/

返回文章
返回