吴珺玥, 赵二刚, 郭增良, 张亚萍, 张建军. 基于Spearman系数和TCN的光伏出力超短期多步预测[J]. 太阳能学报, 2023, 44(9): 180-186. DOI: 10.19912/j.0254-0096.tynxb.2022-0654
引用本文: 吴珺玥, 赵二刚, 郭增良, 张亚萍, 张建军. 基于Spearman系数和TCN的光伏出力超短期多步预测[J]. 太阳能学报, 2023, 44(9): 180-186. DOI: 10.19912/j.0254-0096.tynxb.2022-0654
Wu Junyue, Zhao Ergang, Guo Zengliang, Zhang Yaping, Zhang Jianjun. ULTRA-SHORT-TERM PHOTOVOLTAIC POWER MULTI-STEP PREDICTION BASED ON SPEARMAN COEFFICIENT AND TCN[J]. Acta Energiae Solaris Sinica, 2023, 44(9): 180-186. DOI: 10.19912/j.0254-0096.tynxb.2022-0654
Citation: Wu Junyue, Zhao Ergang, Guo Zengliang, Zhang Yaping, Zhang Jianjun. ULTRA-SHORT-TERM PHOTOVOLTAIC POWER MULTI-STEP PREDICTION BASED ON SPEARMAN COEFFICIENT AND TCN[J]. Acta Energiae Solaris Sinica, 2023, 44(9): 180-186. DOI: 10.19912/j.0254-0096.tynxb.2022-0654

基于Spearman系数和TCN的光伏出力超短期多步预测

ULTRA-SHORT-TERM PHOTOVOLTAIC POWER MULTI-STEP PREDICTION BASED ON SPEARMAN COEFFICIENT AND TCN

  • 摘要: 研究一种基于Spearman相关系数和改进时间卷积网络(TCN)的超短期多步光伏功率预测方法。首先,采用Spearman相关系数方法对输入的天气特征量进行筛选;然后,构建合适的时间卷积网络使其适配光伏功率预测问题。经过实际的光伏电站数据测试,单步预测模型拟合度为99.41%,预测平均绝对误差为61.04,均优于传统的长短期记忆神经网络(LSTM)。

     

    Abstract: This paper developed a ultra-short-term photovoltaic power prediction model based on Spearman coefficient and improved TCN. First,we used Spearman coefficient to screen the input weather characteristics,and then we built a proper TCN to make it suitable for the photovoltaic power prediction problems. Through the actual data test of photovoltaic power station,the fitting degree of the model is 99.41%,and MAE of prediction is 61.04,which is better than the traditional time series problem model LSTM.

     

/

返回文章
返回