刘长良, 赵陆阳, 王梓齐, 徐健. 基于时空注意力-Seq2Seq模型的多风电机组多步风速预测算法[J]. 太阳能学报, 2023, 44(8): 420-429. DOI: 10.19912/j.0254-0096.tynxb.2022-0540
引用本文: 刘长良, 赵陆阳, 王梓齐, 徐健. 基于时空注意力-Seq2Seq模型的多风电机组多步风速预测算法[J]. 太阳能学报, 2023, 44(8): 420-429. DOI: 10.19912/j.0254-0096.tynxb.2022-0540
Liu Changliang, Zhao Luyang, Wang Ziqi, Xu Jian. MULTI-STEP WIND SPEED PREDICTION ALGORITHM OF MULTIPLE WIND TURBINES BASED ON SPATIAL-TEMPORAL ATTENTION-SEQ2SEQ MODEL[J]. Acta Energiae Solaris Sinica, 2023, 44(8): 420-429. DOI: 10.19912/j.0254-0096.tynxb.2022-0540
Citation: Liu Changliang, Zhao Luyang, Wang Ziqi, Xu Jian. MULTI-STEP WIND SPEED PREDICTION ALGORITHM OF MULTIPLE WIND TURBINES BASED ON SPATIAL-TEMPORAL ATTENTION-SEQ2SEQ MODEL[J]. Acta Energiae Solaris Sinica, 2023, 44(8): 420-429. DOI: 10.19912/j.0254-0096.tynxb.2022-0540

基于时空注意力-Seq2Seq模型的多风电机组多步风速预测算法

MULTI-STEP WIND SPEED PREDICTION ALGORITHM OF MULTIPLE WIND TURBINES BASED ON SPATIAL-TEMPORAL ATTENTION-SEQ2SEQ MODEL

  • 摘要: 针对在多风电机组风速预测任务中,卷积运算不适用于提取排布不规则的多风电机组空间相关性的问题,提出一种基于时空注意力-Seq2Seq模型的多风电机组多步风速预测算法。首先使用空间注意力机制强化风速序列的空间相关性,并对常规空间注意力机制进行改进;之后使用Seq2Seq模型中的编码器进行编码;最后使用结合时间注意力机制的解码器计算多风电机组的多步预测结果。以河北市某风电场的实际数据为算例进行实验,结果表明相比其他对比算法,所提算法的平均绝对误差下降约4.3%~15.0%,精度有较大提高。

     

    Abstract: Aiming at the problem of convolution operation is not suitable for extracting spatial correlations of multiple wind turbines with irregular layout in wind speed prediction tasks for multiple wind turbines,a multi-step wind speed prediction algorithm of multiple wind turbines based on the spatial-temporal attention-Seq2Seq model is proposed. Firstly,the spatial attention mechanism is used to strengthen the spatial correlation of wind speed sequences,and the conventional spatial attention mechanism is improved. Then,the encoder in the Seq2Seq model is used to encode the data. Finally,the decoder combined with the temporal attention mechanism is used to calculate the multi-step prediction results of multiple wind turbines. A wind speed dataset of a wind farm in Hebei is used as a case,the results show that the average absolute error of the proposed algorithm is reduced by about 4.3%-15.0% compared with other comparison algorithms,and the accuracy is significantly improved.

     

/

返回文章
返回