王华彪, 鲁冠军, 李小勇. 基于卷积和共享权系数长短时记忆网络的空时融合机制在风速预测上的应用研究[J]. 太阳能学报, 2022, 43(11): 156-165. DOI: 10.19912/j.0254-0096.tynxb.2021-1362
引用本文: 王华彪, 鲁冠军, 李小勇. 基于卷积和共享权系数长短时记忆网络的空时融合机制在风速预测上的应用研究[J]. 太阳能学报, 2022, 43(11): 156-165. DOI: 10.19912/j.0254-0096.tynxb.2021-1362
Wang Huabiao, Lu Guanjun, Li Xiaoyong. RESEARCH ON APPLICATION OF SPATIO-TEMPORAL FUSION MECHANISM BASED ON CONVOLUTION AND SHARED WEIGHT LONG SHORT-TERM MEMORY NETWORK IN WIND SPEED PREDICTION[J]. Acta Energiae Solaris Sinica, 2022, 43(11): 156-165. DOI: 10.19912/j.0254-0096.tynxb.2021-1362
Citation: Wang Huabiao, Lu Guanjun, Li Xiaoyong. RESEARCH ON APPLICATION OF SPATIO-TEMPORAL FUSION MECHANISM BASED ON CONVOLUTION AND SHARED WEIGHT LONG SHORT-TERM MEMORY NETWORK IN WIND SPEED PREDICTION[J]. Acta Energiae Solaris Sinica, 2022, 43(11): 156-165. DOI: 10.19912/j.0254-0096.tynxb.2021-1362

基于卷积和共享权系数长短时记忆网络的空时融合机制在风速预测上的应用研究

RESEARCH ON APPLICATION OF SPATIO-TEMPORAL FUSION MECHANISM BASED ON CONVOLUTION AND SHARED WEIGHT LONG SHORT-TERM MEMORY NETWORK IN WIND SPEED PREDICTION

  • 摘要: 针对对于风能规划和应用都具有重大影响的风速存在强随机性问题,该文提出结合卷积神经网络(CNN)和共享权重长短期记忆网络(SWLSTM)的空时融合模型(CSWLSTM),充分提取风速序列中蕴含的空域和时域信息,以提升预测精度。此外,为了获得可靠的风速概率预测结果,提出一种新的结合CNN、SWLSTM和高斯过程回归(GPR)的混合模型,称为CSWLSTM-GPR。将CSWLSTM-GPR应用于中国内蒙古风速预测案例,从点预测精度、区间预测适用性和概率预测综合性能3个方面与相同结构的CNN和SWLSTM模型的风速预测方法进行比较。CSWLSTM-GPR的可靠性测试保证了预测结果的可靠性和说服力。实验结果表明,CSWLSTM-GPR在风速预测问题上能获得高精度的点预测、合适的预测区间和可靠的概率预测结果,也充分展现了该研究所提出CSWLSTM在风速预测方面具有较好的应用潜力。

     

    Abstract: In view of the strong randomness of wind speed in wind energy,it is difficult for wind power to be connected to the grid,reliable and high-quality wind speed prediction results are very important issues for the planning and application of wind energy. In this research,a spatio-temporal fusion model(CSWLSTM)combining convolutional neural network(CNN)and shared weight long shortterm memory network(SWLSTM)is proposed to fully extract the spatial and temporal information contained in the wind speed sequence to improve prediction accuracy. In addition,in order to obtain reliable wind speed probability prediction results,a new hybrid model integrating CNN,SWLSTM and GPR is proposed,called CSWLSTM-GPR. CSWLSTM-GPR is applied to the case of wind speed prediction in Inner Mongolia,China. Comparing the wind speed prediction methods of CNN and SWLSTM models with the same structure in terms of point prediction accuracy,interval prediction applicability and comprehensive performance of probability prediction. The reliability test of CSWLSTM-GPR ensures the reliability and persuasiveness of the predicted results. The experimental results show that CSWLSTM-GPR can obtain high-precision point prediction,appropriate prediction interval and reliable probability prediction results in the wind speed prediction problem. It also fully demonstrates that the CSWLSTM proposed by this research has good application potential in wind speed prediction.

     

/

返回文章
返回