蒋兴群, 刘波, 宋力, 焦晓峰, 冯瑞, 陈永艳. 基于改进YOLO-v3的风力机叶片表面损伤检测识别[J]. 太阳能学报, 2023, 44(3): 212-217. DOI: 10.19912/j.0254-0096.tynxb.2021-1317
引用本文: 蒋兴群, 刘波, 宋力, 焦晓峰, 冯瑞, 陈永艳. 基于改进YOLO-v3的风力机叶片表面损伤检测识别[J]. 太阳能学报, 2023, 44(3): 212-217. DOI: 10.19912/j.0254-0096.tynxb.2021-1317
Jiang Xingqun, Liu Bo, Song Li, Jiao Xiaofeng, Feng Rui, Chen Yongyan. SURFACE DAMAGE DETECTION AND RECOGNITION OF WIND TURBINE BLADE BASED ON IMPROVED YOLO-v3[J]. Acta Energiae Solaris Sinica, 2023, 44(3): 212-217. DOI: 10.19912/j.0254-0096.tynxb.2021-1317
Citation: Jiang Xingqun, Liu Bo, Song Li, Jiao Xiaofeng, Feng Rui, Chen Yongyan. SURFACE DAMAGE DETECTION AND RECOGNITION OF WIND TURBINE BLADE BASED ON IMPROVED YOLO-v3[J]. Acta Energiae Solaris Sinica, 2023, 44(3): 212-217. DOI: 10.19912/j.0254-0096.tynxb.2021-1317

基于改进YOLO-v3的风力机叶片表面损伤检测识别

SURFACE DAMAGE DETECTION AND RECOGNITION OF WIND TURBINE BLADE BASED ON IMPROVED YOLO-v3

  • 摘要: 为对风力机叶片损伤状态进行有效检测,提出一种基于改进YOLO-v3算法的风力机叶片表面损伤检测识别技术。根据风力机叶片损伤区域特点,对网络中锚框(anchor)的尺度进行调整优化;在特征提取网络后引入基于注意力机制的挤压与激励网络(squeeze and excitation networks,SENet)结构,使YOLO-v3算法更加关注与目标相关的特征通道,提升网络性能。结果表明,改进后算法的平均精度为84.42%,较原YOLO-v3算法提升了6.14%,检测时间减少了21 ms,改进后的YOLO-v3算法能较好地识别出风力机叶片表面损伤。

     

    Abstract: Wind turbine blades is one of the important components for capturing wind energy,and the health of blades affects the performance of the whole generator set. To detect the damage status of blades effectively,a wind turbine blade damage detection and identification technique is proposed based on the improved YOLO-v3 algorithm. According to the characteristics of wind turbine blade damage area,the scale of anchor frame in the network is adjusted and optimized. The squeeze and excitation networks(SENet)structure based on the attention mechanism is introduced after the feature extraction network to make the YOLO-v3 algorithm focus more on the target-related feature channels and improve the network performance. Results show that the MAP(mean average precision)value of the improved YOLO-v3 algorithm is 84.42%,which is 6.14% higher than the original YOLO-v3algorithm,and the detection time is reduced by 21 ms,the improved YOLO-v3 algorithm can better identify the surface damage of blades.

     

/

返回文章
返回