许波峰, 李振, 朱紫璇, 蔡新, 王同光, 赵振宙. 大型下风向柔性叶片参数化建模及两目标优化设计[J]. 太阳能学报, 2023, 44(3): 147-154. DOI: 10.19912/j.0254-0096.tynxb.2021-1247
引用本文: 许波峰, 李振, 朱紫璇, 蔡新, 王同光, 赵振宙. 大型下风向柔性叶片参数化建模及两目标优化设计[J]. 太阳能学报, 2023, 44(3): 147-154. DOI: 10.19912/j.0254-0096.tynxb.2021-1247
Xu Bofeng, Li Zhen, Zhu Zixuan, Cai Xin, Wang Tongguang, Zhao Zhenzhou. PARAMETRIC MODELING AND TWO-OBJECTIVE OPTIMAL DESIGN OF LARGE-SCALE DOWNWIND FLEXIBLE BLADES[J]. Acta Energiae Solaris Sinica, 2023, 44(3): 147-154. DOI: 10.19912/j.0254-0096.tynxb.2021-1247
Citation: Xu Bofeng, Li Zhen, Zhu Zixuan, Cai Xin, Wang Tongguang, Zhao Zhenzhou. PARAMETRIC MODELING AND TWO-OBJECTIVE OPTIMAL DESIGN OF LARGE-SCALE DOWNWIND FLEXIBLE BLADES[J]. Acta Energiae Solaris Sinica, 2023, 44(3): 147-154. DOI: 10.19912/j.0254-0096.tynxb.2021-1247

大型下风向柔性叶片参数化建模及两目标优化设计

PARAMETRIC MODELING AND TWO-OBJECTIVE OPTIMAL DESIGN OF LARGE-SCALE DOWNWIND FLEXIBLE BLADES

  • 摘要: 为了应对超大型风力机的发展对叶片带来的挑战,利用叶片多目标设计方法重点研究大型下风向柔性叶片气动与结构参数的优化设计。构建叶片弦长、扭角和挥舞刚度参数模型,以下风向布局的NREL 5 MW风力机叶片为优化对象,基于快速非支配排序遗传算法开展单机年发电量最大和叶根挥舞弯矩最小的两目标下风向叶片优化设计,得到符合预期的Pareto最优解集。取解集中3套具有代表性的最优解进行分析,由于下风向离心力矩可抵消一部分挥舞弯矩,所以叶根挥舞弯矩均有大幅降低,其中A叶片以牺牲0.963%年发电量的代价,使其叶根挥舞弯矩和叶片挥舞刚度分别减小7.951%和27.071%,可实现大型下风向柔性风轮的轻量化优化设计。以选取的3套叶片为基础,分析弦长、扭角、挥舞刚度对优化目标的影响机制,发现叶片挥舞刚度参数对两优化目标的影响最大。

     

    Abstract: In order to meet the blade design challenge brought by the development of super large wind turbines,the aerodynamic and structural optimization design of the large-scale downwind flexible blade is studied emphatically by the multi-objective design method.The parametric models of chord length,twist angle and flapping stiffness are established. The NREL 5 MW downwind wind turbine blade is optimized based on the Non-dominated Sorting Genetic Algorithm to achieve the maximum annual energy production(AEP)and the minimum blade root flapping bending moment(BRFBM). A Pareto optimal solution set is obtained,and three representative optimal solutions are selected for analysis. The analyses show that the BRFBM of the downwind blade will be greatly reduced because the centrifugal moment can offset part of the flapping bending moment. For A-blade,the BRFBM and the blade flapping stiffness are reduced by 7.951% and 27.071% respectively at the cost of 0.963% AEP loss,thereby can achieve the lightweight optimization design of an extreme-scale downwind flexible blade. Furthermore,the influence mechanisms of chord length,twist angle and flapping stiffness on the optimization goal are analyzed,and it is found that the flapping stiffness parameter has the greatest influence on the two optimization goals.

     

/

返回文章
返回