马偲征, 王聪, 王小荣, 张宏立. 基于混合深度学习模型的风速区间预测研究[J]. 太阳能学报, 2023, 44(3): 139-146. DOI: 10.19912/j.0254-0096.tynxb.2021-1241
引用本文: 马偲征, 王聪, 王小荣, 张宏立. 基于混合深度学习模型的风速区间预测研究[J]. 太阳能学报, 2023, 44(3): 139-146. DOI: 10.19912/j.0254-0096.tynxb.2021-1241
Ma Caizheng, Wang Cong, Wang Xiaorong, Zhang Hongli. RESEARCH ON WIND SPEED INTERVAL PREDICTION BASED ON HYBRID DEEP LEARNING MODEL[J]. Acta Energiae Solaris Sinica, 2023, 44(3): 139-146. DOI: 10.19912/j.0254-0096.tynxb.2021-1241
Citation: Ma Caizheng, Wang Cong, Wang Xiaorong, Zhang Hongli. RESEARCH ON WIND SPEED INTERVAL PREDICTION BASED ON HYBRID DEEP LEARNING MODEL[J]. Acta Energiae Solaris Sinica, 2023, 44(3): 139-146. DOI: 10.19912/j.0254-0096.tynxb.2021-1241

基于混合深度学习模型的风速区间预测研究

RESEARCH ON WIND SPEED INTERVAL PREDICTION BASED ON HYBRID DEEP LEARNING MODEL

  • 摘要: 风速的不确定性使风速预测难度加大,从而使风能难以被有效利用,为解决这个问题,基于卷积网络、共享权重长短时记忆网络、注意力机制和高斯过程回归,提出一种混合深度学习模型进行风速区间预测。首先采用卷积与共享权重的长短时记忆两者相融合的网络对风速序列进行特征提取,然后加入注意力机制有侧重地对特征向量加以利用,最后通过高斯过程回归进行区间预测。将该模型应用于2个风速数据集进行测试,从点预测、区间预测2个方面与其他风速预测方法进行对比。实验结果表明,所提预测模型能获得高精度预测结果及合适的预测区间。

     

    Abstract: The uncertainty of wind speed makes it more difficult to predict wind speed,and wind energy is difficult to be used effectively. In order to solve the above problems,a hybrid depth learning model for wind speed interval prediction is proposed based on Convolutional Neural Network(CNN),Shared Weight Long Short-Term Memory Network(SWLSTM),Attention Mechanism(AM)and Gaussian Process Regression(GPR). Firstly,the network combined CNN and SWLSTM is used to extract the features of wind speed series. Secondly,AM module is added to make use of the feature vector. Finally,the interval prediction is carried out through GPR. The model is applied to two wind speed data sets to test,and compared with other wind speed prediction models from two aspects of point prediction accuracy and interval prediction results. The experimental results show that the prediction model can obtain highprecision prediction results and appropriate prediction interval.

     

/

返回文章
返回