邢晨, 张照贝. 基于改进时间卷积网络的短期光伏出力概率预测方法[J]. 太阳能学报, 2023, 44(2): 373-380. DOI: 10.19912/j.0254-0096.tynxb.2021-1033
引用本文: 邢晨, 张照贝. 基于改进时间卷积网络的短期光伏出力概率预测方法[J]. 太阳能学报, 2023, 44(2): 373-380. DOI: 10.19912/j.0254-0096.tynxb.2021-1033
Xing Chen, Zhang Zhaobei. SHORT-TERM PROBABILISTIC FORECASTING METHOD OF PHOTOVOLTAIC OUTPUT POWER BASED ON IMPROVED TEMPORAL CONVOLUTIONAL NETWORK[J]. Acta Energiae Solaris Sinica, 2023, 44(2): 373-380. DOI: 10.19912/j.0254-0096.tynxb.2021-1033
Citation: Xing Chen, Zhang Zhaobei. SHORT-TERM PROBABILISTIC FORECASTING METHOD OF PHOTOVOLTAIC OUTPUT POWER BASED ON IMPROVED TEMPORAL CONVOLUTIONAL NETWORK[J]. Acta Energiae Solaris Sinica, 2023, 44(2): 373-380. DOI: 10.19912/j.0254-0096.tynxb.2021-1033

基于改进时间卷积网络的短期光伏出力概率预测方法

SHORT-TERM PROBABILISTIC FORECASTING METHOD OF PHOTOVOLTAIC OUTPUT POWER BASED ON IMPROVED TEMPORAL CONVOLUTIONAL NETWORK

  • 摘要: 为提高光伏出力的预测精度,提出基于改进时间卷积网络的短期光伏出力概率预测方法。首先,通过递归特征消除确定特征数量,采用分组整合方法进行特征选择;然后,采用变分模态分解处理光伏出力序列;最后,构建一种结合注意力机制的改进时间卷积网络预测模型,得到未来时刻不同分位数下的预测值,再利用核密度估计得到概率密度曲线。实验结果表明,提出方法具有更高的预测精度,可有效反映光伏出力的不确定性。

     

    Abstract: In order to improve the accuracy of solarpower prediction,a short-term solarpower probability prediction method based on an improved temporal convolutional network is proposed. First,recursive feature elimination is used to determine the number of features,and the EGSG method is used for feature selection;then the variational mode decomposition(VMD)is used to decompose the power sequence. Finally,an improved time convolutional network prediction model combined with attention mechanism is constructed to obtain the predicted values at different quantiles in the future,the kernel density estimation is used to obtain the probability density curve. Experimental results show that the proposed method has higher prediction accuracy and can reflect the uncertainty of photovoltaic output moreeffectively.

     

/

返回文章
返回