王丽朝, 孟子尧, 陈诗明, 许盛之, 龚友康, 赵颖. 基于GRU神经网络的光伏电站数据预处理方法[J]. 太阳能学报, 2022, 43(11): 78-84. DOI: 10.19912/j.0254-0096.tynxb.2021-0521
引用本文: 王丽朝, 孟子尧, 陈诗明, 许盛之, 龚友康, 赵颖. 基于GRU神经网络的光伏电站数据预处理方法[J]. 太阳能学报, 2022, 43(11): 78-84. DOI: 10.19912/j.0254-0096.tynxb.2021-0521
Wang Lichao, Meng Ziyao, Chen Shiming, Xu Shengzhi, Gong Youkang, Zhao Ying. PREPROCESSING METHOD FOR PHOTOVOLTAIC POWER PLANT DATA BASED ON GRU NEURAL NETWORK[J]. Acta Energiae Solaris Sinica, 2022, 43(11): 78-84. DOI: 10.19912/j.0254-0096.tynxb.2021-0521
Citation: Wang Lichao, Meng Ziyao, Chen Shiming, Xu Shengzhi, Gong Youkang, Zhao Ying. PREPROCESSING METHOD FOR PHOTOVOLTAIC POWER PLANT DATA BASED ON GRU NEURAL NETWORK[J]. Acta Energiae Solaris Sinica, 2022, 43(11): 78-84. DOI: 10.19912/j.0254-0096.tynxb.2021-0521

基于GRU神经网络的光伏电站数据预处理方法

PREPROCESSING METHOD FOR PHOTOVOLTAIC POWER PLANT DATA BASED ON GRU NEURAL NETWORK

  • 摘要: 光伏电站数据为时间序列数据,会受到通信传输、逆变器采集等因素的影响而包含大量异常数据,故该文研究一种基于深度学习的光伏电站数据预处理算法,进行数据清洗等预处理。一方面,根据组串逆变器的工作特性,对光伏电站数据的常见异常类型进行分析标记,结合滑动窗口法划分数据,构建用于深度学习训练的光伏电站数据集。另一方面,从激活函数、损失函数以及隐藏层等方面优化GRU神经网络模型,并利用自建数据集对该模型进行训练和测试。测试结果表明:该模型在实际光伏电站数据上的处理准确率达99.84%。

     

    Abstract: Running data from the photovoltaic power system is time indexed,which may be incomplete caused by low quality communication, and always contain the amount of abnormal data from the inverter. This paper studies the algorithm to preprocess photovoltaic data before being used to evaluate the whole system performance. The preprocessing includes labeling abnormal data and cleaning noise data. One optimized GRU neural network is used to do that, which is trained on our lab-built dataset. The GRU network is optimized to process photovoltaic data more efficiently with the activation function, loss function, and hidden layer. The best accuracy is as good as 99.84% from the test dataset consisting of actual photovoltaic data which is not used in training.

     

/

返回文章
返回