柏林, 晏锐, 刘小峰, 孔德斌, 王明迪. 基于多层深度互信息变分网络的风电机组轴承故障预警方法[J]. 太阳能学报, 2022, 43(11): 194-202. DOI: 10.19912/j.0254-0096.tynxb.2021-0513
引用本文: 柏林, 晏锐, 刘小峰, 孔德斌, 王明迪. 基于多层深度互信息变分网络的风电机组轴承故障预警方法[J]. 太阳能学报, 2022, 43(11): 194-202. DOI: 10.19912/j.0254-0096.tynxb.2021-0513
Bo Lin, Yan Rui, Liu Xiaofeng, Kong Debin, Wang Mingdi. WIND TURBINE BEARING FAULT EARLY WARNING BASED ON MULTILAYER DEPTH MUTUAL INFORMATION VARIATIONAL NETWORK[J]. Acta Energiae Solaris Sinica, 2022, 43(11): 194-202. DOI: 10.19912/j.0254-0096.tynxb.2021-0513
Citation: Bo Lin, Yan Rui, Liu Xiaofeng, Kong Debin, Wang Mingdi. WIND TURBINE BEARING FAULT EARLY WARNING BASED ON MULTILAYER DEPTH MUTUAL INFORMATION VARIATIONAL NETWORK[J]. Acta Energiae Solaris Sinica, 2022, 43(11): 194-202. DOI: 10.19912/j.0254-0096.tynxb.2021-0513

基于多层深度互信息变分网络的风电机组轴承故障预警方法

WIND TURBINE BEARING FAULT EARLY WARNING BASED ON MULTILAYER DEPTH MUTUAL INFORMATION VARIATIONAL NETWORK

  • 摘要: 针对变工况复杂环境下风电机组轴承的早期故障潜隐性高且故障阈值设置困难的问题,提出一种基于多层深度互信息变分网络的轴承故障超前预警方法。该网络在变分自编码器的架构上进行多层编码拓展,采用解码信号的二次编码增强了变分网络对输入信号中噪声的鲁棒性,通过隐层变量与输入信号间最大化互信息以及与二次编码特征间的最大化互信息,提高了网络对轴承正常状态空间的建模能力。以二次编码特征与隐层变量的重构误差为基础,构建健康指数,结合三次递推指数加权移动平均模型设置与风电机组轴承工况环境相适应的健康基线。在2个风电机组轴承故障检测试验中的应用结果表明,该方法对比传统的基于模型重构的轴承早期故障检测方法,具有更高故障预警准确率和抗干扰能力。

     

    Abstract: For the wind turbine in variable working conditions and complex environment,the fault monitoring and early warning of its bearing faces the problems of high latent characteristics of and the difficulty in fault threshold setting. Aiming to the problems,an early warning method based on multi-layer deep mutual information variational network(MDMIVN) is proposed. The coding layer of variational auto-coder is extended to multi-layer encoding,and the decoded signal is encoded again to improve the network robustness to the noise in the original fault signal. To improve the ability of modeling the bearing normal state space,the maximum mutual information between the latent variables and the input signal,between the latent variables and the secondary coding features are introduced as the loss functions. The health index is established based on the reconstruction errors between the secondary coding features and the latent variables. And then,the health baseline is adaptively set,by combining the triple exponential weighted moving average model and the updating iteration of the health indexes. The experimental results on two wind turbine bearing vibration data sets show that compared with the traditional early fault detection method based on model reconstruction,the proposed method has high fault warning accuracy,anti-interference ability.

     

/

返回文章
返回