李志军, 李格格, 张家安. 电能质量变权综合评估及多功能并网逆变器多目标优化[J]. 太阳能学报, 2022, 43(11): 515-521. DOI: 10.19912/j.0254-0096.tynxb.2021-0466
引用本文: 李志军, 李格格, 张家安. 电能质量变权综合评估及多功能并网逆变器多目标优化[J]. 太阳能学报, 2022, 43(11): 515-521. DOI: 10.19912/j.0254-0096.tynxb.2021-0466
Li Zhijun, Li Gege, Zhang Jiaan. POWER QUALITY VARIABLE WEIGHT COMPREHENSIVE EVALUATION AND MULTIOBJECTIVE OPTIMAZATION OF MULTIFUNCTIONAL GRID-CONNECTED INVERTER[J]. Acta Energiae Solaris Sinica, 2022, 43(11): 515-521. DOI: 10.19912/j.0254-0096.tynxb.2021-0466
Citation: Li Zhijun, Li Gege, Zhang Jiaan. POWER QUALITY VARIABLE WEIGHT COMPREHENSIVE EVALUATION AND MULTIOBJECTIVE OPTIMAZATION OF MULTIFUNCTIONAL GRID-CONNECTED INVERTER[J]. Acta Energiae Solaris Sinica, 2022, 43(11): 515-521. DOI: 10.19912/j.0254-0096.tynxb.2021-0466

电能质量变权综合评估及多功能并网逆变器多目标优化

POWER QUALITY VARIABLE WEIGHT COMPREHENSIVE EVALUATION AND MULTIOBJECTIVE OPTIMAZATION OF MULTIFUNCTIONAL GRID-CONNECTED INVERTER

  • 摘要: 光伏发电波动性和负荷随机性将引发电能质量评估指标的变化,多功能并网逆变器通常采用固化权重的综合评估指标及单目标优化控制方法,可能造成电能质量治理的劣化及剩余容量的利用率过低。该文利用混合变权原理改进的G1法,提出一种新的电能质量综合指标评估方法,该方法根据源、荷的动态变化,实时调整各电能指标的权重,实现对综合电能质量的客观评估。在此基础上,将电能质量综合指标最优和逆变器投入补偿容量最小作为目标函数,并对单项电能指标进行约束,利用带精英策略的非支配排序遗传算法(NSGA-Ⅱ)实现多目标优化。最后在Matlab中验证所提策略的可行性和有效性。

     

    Abstract: The fluctuation of photovoltaic power generation and load randomness lead to the change of power quality evaluation indexes.The fixed weight comprehensive evaluation index and single objective optimization are usually used by the multifunctional gridconnected inverter,which may cause the deterioration of power quality control effect and the low utilization rate of residual capacity.Based on G1 method improved by mixed variable weight principle,a new comprehensive power quality index evaluation method is proposed. According to the dynamic changes of source and load,the weight of each power index is adjusted in real time to realize the objective evaluation of power quality. On this basis,the optimal comprehensive power quality index and the minimum compensation capacity of the inverter are taken as the objective functions,and the individual indexes are constrained. The nondominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ)is used to realize the multi objective optimization. Finally,the feasibility and effectiveness of the proposed strategy are verified in Matlab.

     

/

返回文章
返回