张家安, 刘东, 刘辉, 宋鹏, 刘京波, 吴宇辉. 基于风速波动特征提取的超短期风速预测[J]. 太阳能学报, 2022, 43(9): 308-313. DOI: 10.19912/j.0254-0096.tynxb.2020-1371
引用本文: 张家安, 刘东, 刘辉, 宋鹏, 刘京波, 吴宇辉. 基于风速波动特征提取的超短期风速预测[J]. 太阳能学报, 2022, 43(9): 308-313. DOI: 10.19912/j.0254-0096.tynxb.2020-1371
Zhang Jiaan, Liu Dong, Liu Hui, Song Peng, Liu Jingbo, Wu Yuhui. ULTRA SHORT TERM WIND SPEED PREDICTION BASED ON WIND SPEED FLUCTUATION FEATURE EXTRACTION[J]. Acta Energiae Solaris Sinica, 2022, 43(9): 308-313. DOI: 10.19912/j.0254-0096.tynxb.2020-1371
Citation: Zhang Jiaan, Liu Dong, Liu Hui, Song Peng, Liu Jingbo, Wu Yuhui. ULTRA SHORT TERM WIND SPEED PREDICTION BASED ON WIND SPEED FLUCTUATION FEATURE EXTRACTION[J]. Acta Energiae Solaris Sinica, 2022, 43(9): 308-313. DOI: 10.19912/j.0254-0096.tynxb.2020-1371

基于风速波动特征提取的超短期风速预测

ULTRA SHORT TERM WIND SPEED PREDICTION BASED ON WIND SPEED FLUCTUATION FEATURE EXTRACTION

  • 摘要: 针对风电场风速预测准确度不高的问题,提出一种基于风速波动特征提取的超短期风速预测方法。首先建立风速-风速变化量联合概率密度模型,分析风速的不确定性特征;根据风速波动特征,应用集合经验模态分解(EEMD)和风速分量样本熵(SampEn)值,将风速分解重组为波动量和趋势量;应用人工鱼群算法(AFSA)优化小波神经网络(WNN)进行趋势量预测;应用改进非线性自回归(INARX)神经网络对风速波动量进行预测,进而得到预测风速。通过实际风电场风速仿真预测,并与多种预测方法对比,表明该预测方法预测结果误差较小,可准确地进行超短期风速预测。

     

    Abstract: Aiming at the problem of low accuracy of wind speed prediction in wind farms,an ultra-short term wind speed prediction method based on wind speed fluctuation feature extraction is proposed. Firstly,the joint probability density model of wind speed and wind speed variation is established to analyze the uncertainty characteristics of wind speed. According to the wind speed fluctuation characteristics,the wind speed decomposition is recombined into fluctuation and trend quantity by using the values of Ensemble Empirical Mode Decomposition(EEMD) and Sample Entropy(SampEn) of wind speed components. The Artificial Fish Swarm Algorithm(AFSA) is used to optimize the Wavelet Neural Network(WNN) for trend prediction. The Improved Non-linear Autoregression(INARX)with external input neural network is used to predict the wind speed fluctuation,and then the predicted wind speed is obtained. Through the actual wind farm wind speed simulation prediction and comparison with many forecasting methods,the results show that the prediction error of this method is low,and can accurately predict the ultra-short term wind speed.

     

/

返回文章
返回