王进花, 王跃龙, 黄涛, 曹洁. 基于AE-IFCM的轴承故障诊断方法[J]. 太阳能学报, 2022, 43(7): 310-315. DOI: 10.19912/j.0254-0096.tynxb.2020-1232
引用本文: 王进花, 王跃龙, 黄涛, 曹洁. 基于AE-IFCM的轴承故障诊断方法[J]. 太阳能学报, 2022, 43(7): 310-315. DOI: 10.19912/j.0254-0096.tynxb.2020-1232
Wang Jinhua, Wang Yuelong, Huang Tao, Cao Jie. BEARING FAULT DIAGNOSIS BASED ON AE-IFCM[J]. Acta Energiae Solaris Sinica, 2022, 43(7): 310-315. DOI: 10.19912/j.0254-0096.tynxb.2020-1232
Citation: Wang Jinhua, Wang Yuelong, Huang Tao, Cao Jie. BEARING FAULT DIAGNOSIS BASED ON AE-IFCM[J]. Acta Energiae Solaris Sinica, 2022, 43(7): 310-315. DOI: 10.19912/j.0254-0096.tynxb.2020-1232

基于AE-IFCM的轴承故障诊断方法

BEARING FAULT DIAGNOSIS BASED ON AE-IFCM

  • 摘要: 针对传统模糊聚类(FCM)方法对故障进行聚类的依据是原始数据之间的相似性,在滚动轴承的故障诊断中无法提取轴承数据的深层特征,对于耦合故障、微弱故障等复杂情况下,不同故障的特征难以有效区分,导致故障诊断准确率较低的问题,提出AE-IFCM轴承故障诊断方法。利用自动编码器(AE)网络提取轴承故障的样本特征,再利用改进的FCM(IFCM)进行故障诊断,通过对AE网络提取的抽象特征聚类,不仅可最大限度地利用样本数据,也能降低模型陷入局部极小值的风险。通过在凯斯西储大学轴承故障数据集中的实验表明,AE-IFCM能提高轴承故障诊断的准确性。

     

    Abstract: The traditional fuzzy clustering method clustering the fault is based on the similarity between the original data. But in the fault diagnosis of rolling bearings,that way cannot extracted the deep features of the bearing data well. Especially,in the complex conditions such as coupling faults and weak faults,it is difficult to effectively distinguish the different faults features,which results in low accuracy. In order to solve that problem,we propose the AE-IFCM bearing fault diagnosis method. In this framework,the AutoEncoder(AE)network is used to extract the deep features of the bearing fault samples,and then we utilize the improved FCM for fault diagnosis. It clusters the abstract features extracted by the AE network to maximize the utilization of the sample data and reduce the risk of the model falling into a local minimum. Experiments in the Case Western Reserve university bearing fault data collection show that AE-IFCM can improve the accuracy of bearing fault diagnosis.

     

/

返回文章
返回