周满国, 黄艳国, 段锦锋. 基于GRU-RF模型的太阳辐照度短时预测[J]. 太阳能学报, 2022, 43(7): 166-173. DOI: 10.19912/j.0254-0096.tynxb.2020-1091
引用本文: 周满国, 黄艳国, 段锦锋. 基于GRU-RF模型的太阳辐照度短时预测[J]. 太阳能学报, 2022, 43(7): 166-173. DOI: 10.19912/j.0254-0096.tynxb.2020-1091
Zhou Manguo, Huang Yanguo, Duan Jinfeng. SHORT TERM PREDICTION OF SORAL IRRADIANCE BASED ON GRU-RF MODEL[J]. Acta Energiae Solaris Sinica, 2022, 43(7): 166-173. DOI: 10.19912/j.0254-0096.tynxb.2020-1091
Citation: Zhou Manguo, Huang Yanguo, Duan Jinfeng. SHORT TERM PREDICTION OF SORAL IRRADIANCE BASED ON GRU-RF MODEL[J]. Acta Energiae Solaris Sinica, 2022, 43(7): 166-173. DOI: 10.19912/j.0254-0096.tynxb.2020-1091

基于GRU-RF模型的太阳辐照度短时预测

SHORT TERM PREDICTION OF SORAL IRRADIANCE BASED ON GRU-RF MODEL

  • 摘要: 针对现有太阳辐照度短期预测方法的建模复杂、准确度低等问题,提出一种基于深度学习的GRU-RF动态权值组合预测方法。大气因素与太阳辐照度数据融合,将运算速度较快且模型复杂度较低的随机森林(RF)模型与带有时序记忆的门控循环单元(GRU)神经网络进行动态权值的加权集成,分别将地表接收到的太阳辐照度、近地层气温、相对湿度、近地层风速和相对气压等变化特征进行预测研究。通过几种模型对比分析,结果表明使用GRU-RF模型预测短时(9 h)太阳辐照度结果较好,运行速度较快,在不同时间间隔(5、10以及15 min)下能够很好地预测太阳辐照度数据。

     

    Abstract: Aiming at the problems of complex modeling and low accuracy of existing short-term solar irradiance prediction methods,a GRU-RF dynamic weight combination prediction method based on deep learning is proposed. The atmospheric factors and solar irradiance data are fused,and the random forest(RF)model with fast operation speed and low model complexity is integrated with the gated recurrent unit(GRU)neural network with time sequence memory for dynamic weight weighting. The variation characteristics of solar irradiance,surface air temperature,relative humidity,surface wind speed and relative pressure received by the surface are predicted respectively. Through the comparison and analysis of several models,the results show that the GRU-RF model can be used to predict the solar irradiance in short time(9 h)with faster running speed,and can be used to predict the solar irradiance data well in different time intervals(5,10 and 15 min).

     

/

返回文章
返回