张淑清, 杨振宁, 姜安琦, 李君, 刘海涛, 穆勇. 基于EN-SKPCA降维和FPA优化LSTMNN的短期风电功率预测[J]. 太阳能学报, 2022, 43(6): 204-211. DOI: 10.19912/j.0254-0096.tynxb.2020-1025
引用本文: 张淑清, 杨振宁, 姜安琦, 李君, 刘海涛, 穆勇. 基于EN-SKPCA降维和FPA优化LSTMNN的短期风电功率预测[J]. 太阳能学报, 2022, 43(6): 204-211. DOI: 10.19912/j.0254-0096.tynxb.2020-1025
Zhang Shuqing, Yang Zhenning, Jiang Anqi, Li Jun, Liu Haitao, Mu Yong. SHORT TERM WIND POWER PREDICTION BASED ON EN-SKPCA DIMENSIONALITY REDUCTION AND FPA OPTIMIZING LSTMNN[J]. Acta Energiae Solaris Sinica, 2022, 43(6): 204-211. DOI: 10.19912/j.0254-0096.tynxb.2020-1025
Citation: Zhang Shuqing, Yang Zhenning, Jiang Anqi, Li Jun, Liu Haitao, Mu Yong. SHORT TERM WIND POWER PREDICTION BASED ON EN-SKPCA DIMENSIONALITY REDUCTION AND FPA OPTIMIZING LSTMNN[J]. Acta Energiae Solaris Sinica, 2022, 43(6): 204-211. DOI: 10.19912/j.0254-0096.tynxb.2020-1025

基于EN-SKPCA降维和FPA优化LSTMNN的短期风电功率预测

SHORT TERM WIND POWER PREDICTION BASED ON EN-SKPCA DIMENSIONALITY REDUCTION AND FPA OPTIMIZING LSTMNN

  • 摘要: 综合考虑风电功率序列及气象数据的多维特征,提出一种弹性网稀疏核主成分分析(EN-SKPCA)降维方法,对气象因素降维并表述为回归优化型问题,添加的弹性网惩罚解决了KPCA重构主成分难以解释构成的问题;提出花授粉算法(FPA)优化长短时记忆神经网络(LSTMNN)预测模型,可自动筛选出最佳超参数,降低了参数经验设置所带来的随机性。该方法解决了突变天气的影响,提高了预测精度。对2017年宁夏麻黄山第一风电场实测数据实验,证明了该方法的优越性。

     

    Abstract: Comprehensively considering the characteristics of wind power series and the multi-dimensional meteorological data,a dimensionality reduction method of elastic net improved kernel principal component analysis(EN-SKPCA) is proposed. The dimensionality of meteorological factors is reduced and expressed as a regression optimization problem. The added elastic network penalty solve the problem that the KPCA reconstruction principal component is difficult to explain. The flower pollination algorithm(FPA)is proposed to optimize the long-short-term memory neural network(LSTMNN)prediction. The model can automatically select the best super parameters and reduce the randomness caused by the empirical setting of parameters. The method solves the influence of abrupt weather and improves the prediction accuracy. The superiority of this method is proved by the experiment on the measured data of Mahuangshan No.1 wind farm in Ningxia in 2017.

     

/

返回文章
返回