倪超, 王聪, 朱婷婷, 过奕任. 基于CNN-Bi-LSTM的太阳辐照度超短期预测[J]. 太阳能学报, 2022, 43(3): 197-202. DOI: 10.19912/j.0254-0096.tynxb.2020-0581
引用本文: 倪超, 王聪, 朱婷婷, 过奕任. 基于CNN-Bi-LSTM的太阳辐照度超短期预测[J]. 太阳能学报, 2022, 43(3): 197-202. DOI: 10.19912/j.0254-0096.tynxb.2020-0581
Ni Chao, Wang Cong, Zhu Tingting, Guo Yiren. SUPER-SHORT-TERM FORECAST OF SOLAR IRRADIANCE BASED ON CNN-Bi-LSTM[J]. Acta Energiae Solaris Sinica, 2022, 43(3): 197-202. DOI: 10.19912/j.0254-0096.tynxb.2020-0581
Citation: Ni Chao, Wang Cong, Zhu Tingting, Guo Yiren. SUPER-SHORT-TERM FORECAST OF SOLAR IRRADIANCE BASED ON CNN-Bi-LSTM[J]. Acta Energiae Solaris Sinica, 2022, 43(3): 197-202. DOI: 10.19912/j.0254-0096.tynxb.2020-0581

基于CNN-Bi-LSTM的太阳辐照度超短期预测

SUPER-SHORT-TERM FORECAST OF SOLAR IRRADIANCE BASED ON CNN-Bi-LSTM

  • 摘要: 针对太阳辐射引起光伏出力的不确定性和波动性,进而造成大量光伏发电并网时对电网稳定性和安全的危害,提出一种新的太阳辐射超短期预测方法。该方法通过构建一维卷积神经网络,对多个关键气象变量进行数据融合和特征转换,然后构造双向长短期记忆网络预测模型,实现对未来15 min的太阳总辐照度的超短期预测。实验结果表明,所提出的预测模型相对传统的机器学习方法可有效提高超短期太阳总辐照度的预测精度,且相对持续模型在相对方差上提高了约14%。

     

    Abstract: Since solar radiation causes the uncertainties and fluctuation of photovoltaic power,which is harmful to the stability and safety of the grid when photovoltaic power generation is connected to the grid,a new super-short-term prediction model of solar radiation whas proposed in this paper. Firstly,a one-dimensional convolution neural network is constructed for data fusion and feature transformation of several key meteorological variables;and then a bidirectional Long Short Term Memory network model is developed to predict global solar radiation in the next 15 minutes. The experimental results show that the proposed model can effectively improve the predicting accuracy compared with the traditional machine learning methods,and that the forecast skill of the proposed model has been improved about 14% over the persistence model on the normalized root mean squared errors.

     

/

返回文章
返回