唐振浩, 赵赓楠, 曹生现, 欧阳庭辉, 牟中华, 庞晓娅. 一种基于数据解析的混合风向预测算法[J]. 太阳能学报, 2021, 42(9): 349-356. DOI: 10.19912/j.0254-0096.tynxb.2020-0119
引用本文: 唐振浩, 赵赓楠, 曹生现, 欧阳庭辉, 牟中华, 庞晓娅. 一种基于数据解析的混合风向预测算法[J]. 太阳能学报, 2021, 42(9): 349-356. DOI: 10.19912/j.0254-0096.tynxb.2020-0119
Tang Zhenhao, Zhao Gengnan, Cao Shengxian, Ouyang Tinghui, Mu Zhonghua, Pang Xiaoya. A DATA ANALYSTIC BASED HYBRID WIND DIRECTION PREDICTION ALGORITHM[J]. Acta Energiae Solaris Sinica, 2021, 42(9): 349-356. DOI: 10.19912/j.0254-0096.tynxb.2020-0119
Citation: Tang Zhenhao, Zhao Gengnan, Cao Shengxian, Ouyang Tinghui, Mu Zhonghua, Pang Xiaoya. A DATA ANALYSTIC BASED HYBRID WIND DIRECTION PREDICTION ALGORITHM[J]. Acta Energiae Solaris Sinica, 2021, 42(9): 349-356. DOI: 10.19912/j.0254-0096.tynxb.2020-0119

一种基于数据解析的混合风向预测算法

A DATA ANALYSTIC BASED HYBRID WIND DIRECTION PREDICTION ALGORITHM

  • 摘要: 为了建立准确的风向预测模型,提出一种基于数据解析的混合建模算法(DAHA)。首先,为了获取预测模型的输入变量、减小输入维数,采用分类与回归树算法进行特征初选择。其次,利用变分模态分解(VMD)算法将原始风向数据分解为一系列子序列分别进行研究,并针对不同的子序列采用信息熵理论进行输入变量的二次降维,以进一步优化模型的输入结构。然后,采用高性能、高解析度的深度置信网络(DBN)构建风向预测模型。最后,为了进一步提高模型的预测精度,采用最小二乘支持向量机算法对预测值进行修正。通过实际风电场数据的分析显示,所提算法在超短期风向预测问题中预测误差小于1%,明显优于传统模型,对于风电场的偏航调度有重要的指导意义。

     

    Abstract: To establish an accurate wind direction prediction model,a data analytics-based hybrid algorithm(DAHA)was proposed.First,a classification and regression tree algorithm were employed to obtain the model inputs and reduce the inputs dimension. Second,the original data was decomposed by variational mode decomposition(VMD)into a series of subsequences for further study. And the dimensions of the subsequences were reduced based on information entropy theory to optimize the model inputs. Then,the deep belief network(DBN)was employed to model the relationship between wind direction and inputs. Finally,a least square support vector machine(LSSVM)was utilized to correct the prediction result to improve the prediction accuracy. The experimental results based on practical data illustrated the proposed DAHA algorithm can predict the ultra-short time wind direction with errors under 1%,which has significant meaning to yaw scheduling.

     

/

返回文章
返回