高伟, 黄俊铭. 基于SSELM的光伏组件故障智能诊断方法[J]. 太阳能学报, 2021, 42(12): 465-470. DOI: 10.19912/j.0254-0096.tynxb.2019-1435
引用本文: 高伟, 黄俊铭. 基于SSELM的光伏组件故障智能诊断方法[J]. 太阳能学报, 2021, 42(12): 465-470. DOI: 10.19912/j.0254-0096.tynxb.2019-1435
Gao Wei, Huang Junming. INTELLIGENT FAULT DIAGNOSIS METHOD OF PHOTOVOLTAIC MODULE VIA SSELM[J]. Acta Energiae Solaris Sinica, 2021, 42(12): 465-470. DOI: 10.19912/j.0254-0096.tynxb.2019-1435
Citation: Gao Wei, Huang Junming. INTELLIGENT FAULT DIAGNOSIS METHOD OF PHOTOVOLTAIC MODULE VIA SSELM[J]. Acta Energiae Solaris Sinica, 2021, 42(12): 465-470. DOI: 10.19912/j.0254-0096.tynxb.2019-1435

基于SSELM的光伏组件故障智能诊断方法

INTELLIGENT FAULT DIAGNOSIS METHOD OF PHOTOVOLTAIC MODULE VIA SSELM

  • 摘要: 提出一种半监督极限学习机(SSELM)算法实现在少标签样本下的光伏组件故障诊断。首先,分析光伏组件在不同故障状态下的I-V曲线变化规律,并提取特征量。然后提出一种特征参数标准化方法,实现不同工况下特征参数的转换和标准化。最后,阐述了基于SSELM的故障诊断建模方法。所提方法的优点是,仅利用少量带标签的仿真数据与大量无标签的实测数据即可建立光伏故障诊断模型,极大降低了数据收集的人力和时间成本,且具有较高的辨识准确率。仿真和实例验证了所提故障诊断方法能有效识别光伏组件的短路,遮阴和异常老化故障。

     

    Abstract: The technology of supervised machine learning brings a revolutionary breakthrough to photovoltaic(PV)fault diagnosis,but it requires a large amount of labeled data for model training. A method based on semi-supervised extreme learning machine(SSELM)algorithm for PV fault diagnosis is proposed in this study which uses only a small number of labeled data. First,the variation of the I-V curve of PV modules under different fault conditions was analyzed,and feature parameters were extracted. Then,a method of feature parameter normalization was proposed to realize the conversion and normalization of feature parameters under different working conditions. Finally,SSELM fault diagnosis method was described. The advantage of the proposed method is that only a small amount of labeled simulation data is requred and a large number of unlabeled measured data can be used to build a PV fault diagnosis model,which greatly reduces the labor and time costs of data collection,and has high recognition accuracy. Simulation and real experiment verify that the proposed fault diagnosis method can effectively identify short-circuit,shade and abnormal aging faults of PV modules.

     

/

返回文章
返回