王东风, 李嘉宇, 黄宇, 侯伟珍, 张妍. 风电场风速预测的密度峰值聚类方法研究[J]. 太阳能学报, 2021, 42(12): 110-118. DOI: 10.19912/j.0254-0096.tynxb.2019-1356
引用本文: 王东风, 李嘉宇, 黄宇, 侯伟珍, 张妍. 风电场风速预测的密度峰值聚类方法研究[J]. 太阳能学报, 2021, 42(12): 110-118. DOI: 10.19912/j.0254-0096.tynxb.2019-1356
Wang Dongfeng, Li Jiayu, Huang Yu, Hou Weizhen, Zhang Yan. RESEARCH ON DENSITY PEAKS CLUSTERING METHOD FOR WIND SPEED PREDICTION OF WIND FARMS[J]. Acta Energiae Solaris Sinica, 2021, 42(12): 110-118. DOI: 10.19912/j.0254-0096.tynxb.2019-1356
Citation: Wang Dongfeng, Li Jiayu, Huang Yu, Hou Weizhen, Zhang Yan. RESEARCH ON DENSITY PEAKS CLUSTERING METHOD FOR WIND SPEED PREDICTION OF WIND FARMS[J]. Acta Energiae Solaris Sinica, 2021, 42(12): 110-118. DOI: 10.19912/j.0254-0096.tynxb.2019-1356

风电场风速预测的密度峰值聚类方法研究

RESEARCH ON DENSITY PEAKS CLUSTERING METHOD FOR WIND SPEED PREDICTION OF WIND FARMS

  • 摘要: 针对风电场中风速随机性大,难以准确和高效预测的问题,提出一种基于密度峰值聚类的风电场风速预测方法。该方法首先对风电机组采用密度峰值算法进行聚类,随后采用长短期记忆网络模型,对同类风电机组的风速进行预测。考虑到实际聚类时各指标存在不等重要性的情况,基于加权理论对数据进行了预处理,同时通过用主成分分析对数据进行降维,避免了密度峰值聚类面对高维数据时聚类效果差的现象。最后根据风电场实测数据对该方法的有效性进行了验证,实验结果表明,该方法具有较高的预测精度。

     

    Abstract: In order to solve the problem that wind speed in wind farms is difficult to be predicted accurately and efficiently due to its randomness,this study proposes a wind speed prediction method for wind farms based on density peaks clustering. Utilizing this method,wind turbines are firstly clustered based on density peak algorithm. Subsequently,the long short-term memory network models are used to predict the wind speed of similar wind turbines. Considering the unequal importance of each indicator during actual clustering,the data are preprocessed based on weighting theory. At the same time,the dimension reduction of data is realized through the principal component analysis in order that a poor effect of density peak clustering can be avoided when facing high-dimensional data.Finally,the effectiveness of the proposed method is verified based on the measured data of the wind farm. Experimental results show that the method has relatively high predicting accuracy.

     

/

返回文章
返回