基于IEHO算法的太阳电池模型参数辨识
PARAMETER IDENTIFICATION OF SOLAR CELL MODEL BASED ON IEHO ALGORITHM
-
摘要: 针对传统太阳电池模型参数辨识方法存在精度低、收敛速度慢、易陷入局部最优等不足,提出基于改进象群游牧优化(IEHO)算法的太阳电池模型参数辨识方法。引入混沌初始化,改善初始种群质量,增强种群的遍历性;增加快速移动算子,使算法的收敛速度和全局搜索能力有较大提升;引入精英策略,用最优个体替代最差个体,加快算法寻优速度,缩短寻优时间。应用于太阳电池模型的参数辨识中,IEHO算法比其他算法得到的辨识结果更快更好。对不同光照条件下的太阳电池模型进行参数辨识,辨识结果与实测数据拟合度很高,表明IEHO算法能在不同环境下准确有效地进行太阳电池模型的参数辨识。Abstract: In view of the shortcomings of the traditional parameter identification methods of solar cell model,such as low accuracy,slow convergence speed,easy to trap in local optimization and so on,a parameter identification methods of solar cell based on improved elephant herding optimization(IEHO)algorithm is proposed. Chaos initialization is introduced to improve the quality of the initial population and enhance the ergodicity of the population. The fast moving operator is added,which greatly improves the convergence speed and global search ability of the algorithm. The elitist strategy is introduced to replace the worst individual with the optimal individual to speed up the convergence and shorten the optimization time of the algorithm. Applied to the parameter identification of solar cell model,the identification result of IEHO algorithm is faster and better than that of other algorithms. The parameter identification of solar cell model under different radiation is carried out,and the fitting degree of identification results is high with the measured data,which shows that IEHO algorithm can accurately and effectively identify the parameters of solar cell model in different environments.