张雲钦, 程起泽, 蒋文杰, 刘晓峰, 沈亮, 陈泽华. 基于EMD-PCA-LSTM的光伏功率预测模型[J]. 太阳能学报, 2021, 42(9): 62-69. DOI: 10.19912/j.0254-0096.tynxb.2019-0817
引用本文: 张雲钦, 程起泽, 蒋文杰, 刘晓峰, 沈亮, 陈泽华. 基于EMD-PCA-LSTM的光伏功率预测模型[J]. 太阳能学报, 2021, 42(9): 62-69. DOI: 10.19912/j.0254-0096.tynxb.2019-0817
Zhang Yunqin, Chen Qize, Jiang Wenjie, Liu Xiaofeng, Shen Liang, Chen Zehua. PHOTOVOLTAIC POWER PREDICTION MODEL BASED ON EMD-PCA-LSTM[J]. Acta Energiae Solaris Sinica, 2021, 42(9): 62-69. DOI: 10.19912/j.0254-0096.tynxb.2019-0817
Citation: Zhang Yunqin, Chen Qize, Jiang Wenjie, Liu Xiaofeng, Shen Liang, Chen Zehua. PHOTOVOLTAIC POWER PREDICTION MODEL BASED ON EMD-PCA-LSTM[J]. Acta Energiae Solaris Sinica, 2021, 42(9): 62-69. DOI: 10.19912/j.0254-0096.tynxb.2019-0817

基于EMD-PCA-LSTM的光伏功率预测模型

PHOTOVOLTAIC POWER PREDICTION MODEL BASED ON EMD-PCA-LSTM

  • 摘要: 提高光伏发电功率预测精度,对于保证电力系统的安全调度和稳定运行具有重要意义。本文提出一种经验模态分解(EMD)、主成分分析(PCA)和长短期记忆神经网络(LSTM)相结合的光伏功率预测模型。充分考虑制约光伏输出功率的5种环境因素,首先利用EMD将环境因素序列进行分解,得到数据信号在不同时间尺度上的变化情况,降低环境因素序列的非平稳性;其次利用PCA提取特征序列的关键影响因子,消除原始序列的相关性和冗余性,降低模型输入的维度;最终利用LSTM网络对多变量特征序列进行动态时间建模,实现对光伏发电功率的预测。采用山西省某电站的8个月实测数据进行验证,实验结果表明,该预测模型较传统光伏功率预测方法有更高的精确度。

     

    Abstract: Improving the prediction accuracy of solar power generation is of great significance for ensuring the safe dispatch and stable operation of power systems. This paper presents a photovoltaic power prediction model combining empirical mode decomposition(EMD),principal component analysis(PCA),and long-term and short-term memory neural networks(LSTM). Fully consider the five environmental factors that restrict the photovoltaic output power,firstly,use EMD to decompose the environmental factor sequence to obtain the change of the data signal on different time scales,reduce the non-stationarity of the environmental factor sequence;secondly,use PCA to extract the characteristic sequence. The key impact factor is to eliminate the correlation and redundancy of the original sequence and reduce the dimension of the model input. Finally,the LSTM network is used to perform dynamic time modeling of the multivariate feature sequence to realize the prediction of photovoltaic power generation. The eight-month measured data from a power station in Shanxi Province is used for verification. The experimental results show that the prediction model has higher accuracy than the traditional photovoltaic power prediction method.

     

/

返回文章
返回