黄际元, 杨俊, 黄治国, 陈远扬, 钱军, 胡湘伟. 基于扩展短期预测和动态优化的储能调峰策略[J]. 太阳能学报, 2021, 42(9): 470-476. DOI: 10.19912/j.0254-0096.tynxb.2019-0798
引用本文: 黄际元, 杨俊, 黄治国, 陈远扬, 钱军, 胡湘伟. 基于扩展短期预测和动态优化的储能调峰策略[J]. 太阳能学报, 2021, 42(9): 470-476. DOI: 10.19912/j.0254-0096.tynxb.2019-0798
Huang Jiyuan, Yang Jun, Huang Zhiguo, Chen Yuanyang, Qian Jun, Hu Xiangwei. CONTROL STRATEGY OF ENERGY STORAGE POWER STATION PARTICIPATING IN POWER GRID PEAK SHAVING BASED ON EXTENDED SHORT-TERM LOAD FORECASTING AND DYNAMIC OPTIMIZATION[J]. Acta Energiae Solaris Sinica, 2021, 42(9): 470-476. DOI: 10.19912/j.0254-0096.tynxb.2019-0798
Citation: Huang Jiyuan, Yang Jun, Huang Zhiguo, Chen Yuanyang, Qian Jun, Hu Xiangwei. CONTROL STRATEGY OF ENERGY STORAGE POWER STATION PARTICIPATING IN POWER GRID PEAK SHAVING BASED ON EXTENDED SHORT-TERM LOAD FORECASTING AND DYNAMIC OPTIMIZATION[J]. Acta Energiae Solaris Sinica, 2021, 42(9): 470-476. DOI: 10.19912/j.0254-0096.tynxb.2019-0798

基于扩展短期预测和动态优化的储能调峰策略

CONTROL STRATEGY OF ENERGY STORAGE POWER STATION PARTICIPATING IN POWER GRID PEAK SHAVING BASED ON EXTENDED SHORT-TERM LOAD FORECASTING AND DYNAMIC OPTIMIZATION

  • 摘要: 为更好地提升电池储能电站的调峰性能,提出一种基于扩展短期电力负荷预测和动态优化的储能调峰策略。确定了储能调峰的目标函数,指出影响调峰性能的关键为电力负荷预测精度和储能电量优化。通过对形相似法进行改进,实现对短期电力负荷预测结果的扩展,提高电网负荷预测准确性,确定储能的削峰填谷限值。在此基础上,依据调峰目标对储能出力进行实时规划,得到储能计划能量变化曲线,同时以实际调峰过程中产生的储能能量累积误差实时校正储能的削峰填谷限值,进一步提升储能的调峰性能。以实际电网的典型工况为例进行验证,结果表明:所提方法可提高负荷预测精度,并能较好地满足电网调峰需求,改善储能调峰效果。

     

    Abstract: In order to improve the peak shaving performance of battery energy storage plants,an extended short-term electric load forecasting and dynamic optimization strategy for peak shaving is proposed. The objective function of energy storage peak shaving is determined. It is pointed out that the key factors affecting peak shaving performance are electric load forecasting accuracy and optimal control of energy storage battery. By improving the shape similarity method,the results of short-term electric load forecasting can be expanded,the accuracy of electric load forecasting can be improved,and the peak-shaving and valley-filling limits of energy storage can be determined. On this basis,real-time planning of energy storage output is carried out according to peak shaving objective,and the energy change curve of energy storage plan is obtained. At the same time,the peak shaving and valley filling limit of energy storage is corrected in real time by accumulative error of energy storage generated in actual peak shaving process,so as to further improve the peak shaving performance of energy storage. The results show that the proposed method improves the accuracy of electric load forecasting,satisfies the peak shaving demand of power grid and improves the effect of energy storage and peak shaving.

     

/

返回文章
返回