王顺江, 范永鑫, 潘超, 赵铁英, 韩春成, 杜亮. 基于主成分约简聚类的优化ELM短期风速组合预测[J]. 太阳能学报, 2021, 42(8): 368-373. DOI: 10.19912/j.0254-0096.tynxb.2019-0564
引用本文: 王顺江, 范永鑫, 潘超, 赵铁英, 韩春成, 杜亮. 基于主成分约简聚类的优化ELM短期风速组合预测[J]. 太阳能学报, 2021, 42(8): 368-373. DOI: 10.19912/j.0254-0096.tynxb.2019-0564
Wang Shunjiang, Fan Yongxin, Pan Chao, Zhao Tieying, Han Chuncheng, Du Liang. SHORT-TERM WIND SPEED COMBINED FORECASTING BASED ON OPTIMIZED ELM OF PRINCIPAL COMPONENT REDUCTION CLUSTERING[J]. Acta Energiae Solaris Sinica, 2021, 42(8): 368-373. DOI: 10.19912/j.0254-0096.tynxb.2019-0564
Citation: Wang Shunjiang, Fan Yongxin, Pan Chao, Zhao Tieying, Han Chuncheng, Du Liang. SHORT-TERM WIND SPEED COMBINED FORECASTING BASED ON OPTIMIZED ELM OF PRINCIPAL COMPONENT REDUCTION CLUSTERING[J]. Acta Energiae Solaris Sinica, 2021, 42(8): 368-373. DOI: 10.19912/j.0254-0096.tynxb.2019-0564

基于主成分约简聚类的优化ELM短期风速组合预测

SHORT-TERM WIND SPEED COMBINED FORECASTING BASED ON OPTIMIZED ELM OF PRINCIPAL COMPONENT REDUCTION CLUSTERING

  • 摘要: 提出基于主成分属性约简聚类的粒子群优化极限学习机短期风速预测方法。考虑到不同的属性特征对于风速变化的影响不同,利用主成分分析法计算各成分特征值,选取方差贡献率较高的成分,然后采用k-均值聚类方法对风速样本进行聚类,再利用粒子群算法对极限学习机进行优化,进而构建风速组合预测模型。最后结合风电场实测历史数据进行实验预测对比,结果表明该方法具有较高的预测精度。

     

    Abstract: A new short-term wind speed prediction method by using particle swarm optimization extreme learning machine based on principal component attribute reduction clustering is proposed. Considering the influence of different attribute characteristics on the change of wind speed,the principal component analysis method is used to calculate the eigenvalues of each component,and the components with high variance contribution rate are selected. Then the wind speed samples are grouped by k-means clustering method,and then the extreme learning machine is optimized by particle swarm optimization algorithm. Further,the wind speed combination prediction model is constructed. Finally,the experimental prediction and comparisons are carried out with the measured historical data of wind farm. The results show that the method has high prediction accuracy.

     

/

返回文章
返回