王晓东, 苗宜之, 刘颖明, 张一龙. 基于多分解策略和误差校正的超短期风电功率混合智能预测算法[J]. 太阳能学报, 2021, 42(6): 312-320. DOI: 10.19912/j.0254-0096.tynxb.2019-0211
引用本文: 王晓东, 苗宜之, 刘颖明, 张一龙. 基于多分解策略和误差校正的超短期风电功率混合智能预测算法[J]. 太阳能学报, 2021, 42(6): 312-320. DOI: 10.19912/j.0254-0096.tynxb.2019-0211
Wang Xiaodong, Miao Yizhi, Liu Yingming, Zhang Yilong. HYBRID INTELLIGENT PREDICTION ALGORITHM OF ULTRA-SHORT-TERM WIND POWER BASED ON MULTI-DECOMPOSITION STRATEGY AND ERROR CORRECTION[J]. Acta Energiae Solaris Sinica, 2021, 42(6): 312-320. DOI: 10.19912/j.0254-0096.tynxb.2019-0211
Citation: Wang Xiaodong, Miao Yizhi, Liu Yingming, Zhang Yilong. HYBRID INTELLIGENT PREDICTION ALGORITHM OF ULTRA-SHORT-TERM WIND POWER BASED ON MULTI-DECOMPOSITION STRATEGY AND ERROR CORRECTION[J]. Acta Energiae Solaris Sinica, 2021, 42(6): 312-320. DOI: 10.19912/j.0254-0096.tynxb.2019-0211

基于多分解策略和误差校正的超短期风电功率混合智能预测算法

HYBRID INTELLIGENT PREDICTION ALGORITHM OF ULTRA-SHORT-TERM WIND POWER BASED ON MULTI-DECOMPOSITION STRATEGY AND ERROR CORRECTION

  • 摘要: 为了提高超短期风电功率的预测精度,提出一种包含多分解策略和误差校正的混合智能风电预测算法。多分解策略通过改进的经验模态分解对风电功率进行预处理并利用小波变换对预测误差大的序列再次分解,在降低风电功率序列非平稳性的同时大幅降低高频序列的预测误差;然后利用粒子群优化的自适应神经模糊推理系统对误差进行校正,可降低单一预测算法带来的最大误差,提高算法的鲁棒性。最后,基于辽宁某风电场实测数据的算例分析验证所提算法的可行性与精确性。

     

    Abstract: In order to improve the prediction accuracy of ultra-short-term wind power,a hybrid intelligent wind power prediction algorithm including multi-decomposition strategy and error correction is proposed in this paper. The wind power is preprocessed by the multi-decomposition strategy through the improved empirical mode decomposition. and the sequence with large prediction error is decomposed further by wavelet transform,which reduces the non-stationarity of the wind power and greatly reduces the prediction error of the high-frequency sub-sequence. Then,the adaptive neural fuzzy inference system based on particle swarm optimization is used to correct the error,which reduces the maximum error caused by the single prediction algorithm and improves the application range of the algorithm. Finally,the feasibility and accuracy of the proposed algorithm based on the analysis of the measured data of a wind farm in Liaoning are verified.

     

/

返回文章
返回