李志军, 张奕楠, 王丽娟, 贾学岩, 张雅雯. 基于改进量子粒子群算法的光伏多峰MPPT研究[J]. 太阳能学报, 2021, 42(5): 221-229. DOI: 10.19912/j.0254-0096.tynxb.2018-1449
引用本文: 李志军, 张奕楠, 王丽娟, 贾学岩, 张雅雯. 基于改进量子粒子群算法的光伏多峰MPPT研究[J]. 太阳能学报, 2021, 42(5): 221-229. DOI: 10.19912/j.0254-0096.tynxb.2018-1449
Li Zhijun, Zhang Yi'nan, Wang Lijuan, Jia Xueyan, Zhang Yawen. STUDY OF PHOTOVOLTAIC MULTIMODAL MAXIMUM POWER POINT TRACKING BACED ON IMPROVED QUANTUM PARTICLE SWARM OPTMIZATION[J]. Acta Energiae Solaris Sinica, 2021, 42(5): 221-229. DOI: 10.19912/j.0254-0096.tynxb.2018-1449
Citation: Li Zhijun, Zhang Yi'nan, Wang Lijuan, Jia Xueyan, Zhang Yawen. STUDY OF PHOTOVOLTAIC MULTIMODAL MAXIMUM POWER POINT TRACKING BACED ON IMPROVED QUANTUM PARTICLE SWARM OPTMIZATION[J]. Acta Energiae Solaris Sinica, 2021, 42(5): 221-229. DOI: 10.19912/j.0254-0096.tynxb.2018-1449

基于改进量子粒子群算法的光伏多峰MPPT研究

STUDY OF PHOTOVOLTAIC MULTIMODAL MAXIMUM POWER POINT TRACKING BACED ON IMPROVED QUANTUM PARTICLE SWARM OPTMIZATION

  • 摘要: 针对光伏阵列在局部遮阴时呈现的功率多峰特性,提出一种改进DCWQPSO算法与INC算法相结合的光伏最大功率追踪(MPPT)控制算法。该算法采用改进DCWQPSO算法进行最大功率点的全局搜索,然后利用INC算法对最大功率点进行局部跟踪,可避免动态过程中功率的震荡。仿真结果表明:所提出的MPPT控制算法跟踪速度快、精度高、功率震荡小,可有效提升不确定环境下光伏发电系统的最大功率追踪效率和动态品质,并具有较好的鲁棒性。

     

    Abstract: The quantum particle swarm optimization algorithm exhibits good performance in solving the global optimization problem of multimodal functions,but it is prone to the "premature" problem caused by local extremum;the dynamically changing weight’s quantun-behaved particle swarm optimization(DCWQPSO)algorithm for inertial weight adaptive adjustment. It can effectively avoid the local extremum problem,but it has oscillation phenomenon in the convergence process. Aiming at the power multi-peak characteristics of PV arrays during local shading,this paper proposes a PV maximum power tracking(MPPT)control algorithm that combines DCWQPSO algorithm and INC algorithm. The algorithm uses the improved DCWQPSO algorithm to perform global search of the maximum power point,and then uses the INC algorithm to locally track the maximum power point to avoid power fluctuation in the dynamic process. The simulation results show that the proposed MPPT control algorithm has fast tracking speed,high precision and small power oscillation,which can effectively improve the maximum power tracking efficiency and dynamic quality of photovoltaic power generation system under uncertain environment,and has good robustness.

     

/

返回文章
返回