张娜, 葛磊蛟. 基于SOA优化的光伏短期出力区间组合预测[J]. 太阳能学报, 2021, 42(5): 252-259. DOI: 10.19912/j.0254-0096.tynxb.2018-1424
引用本文: 张娜, 葛磊蛟. 基于SOA优化的光伏短期出力区间组合预测[J]. 太阳能学报, 2021, 42(5): 252-259. DOI: 10.19912/j.0254-0096.tynxb.2018-1424
Zhang Na, Ge Leijiao. PHOTOVOLTAIC SYSTEM SHORT-TERM POWER INTERVAL HYBRID FORECASTING METHOD BASED ON SEEKER OPTIMIZATION ALGORITHM[J]. Acta Energiae Solaris Sinica, 2021, 42(5): 252-259. DOI: 10.19912/j.0254-0096.tynxb.2018-1424
Citation: Zhang Na, Ge Leijiao. PHOTOVOLTAIC SYSTEM SHORT-TERM POWER INTERVAL HYBRID FORECASTING METHOD BASED ON SEEKER OPTIMIZATION ALGORITHM[J]. Acta Energiae Solaris Sinica, 2021, 42(5): 252-259. DOI: 10.19912/j.0254-0096.tynxb.2018-1424

基于SOA优化的光伏短期出力区间组合预测

PHOTOVOLTAIC SYSTEM SHORT-TERM POWER INTERVAL HYBRID FORECASTING METHOD BASED ON SEEKER OPTIMIZATION ALGORITHM

  • 摘要: 将点值预测扩展为区间预测,利用光伏出力相似日样本中区间中点和区间半径进行预测,采用常规的BP神经网络算法、GM(1,1)灰色算法、支持向量机(SVM)算法分别预测,利用人群搜索算法(SOA)对各种区间预测的组合权值进行优化,并设定意愿系数将多目标优化转换为单目标优化。仿真结果表明,所提出的区间预测方法具有较高的预测精度和实用价值。

     

    Abstract: This paper extends the point value prediction to interval prediction. The interval midpoint and interval radius of the similar day sample are used to forecast the PV output using the conventional BP neural network algorithm,the GM(1,1)algorithm and the support vector machine(SVM)algorithm respectively. The combination weights of various interval forecasting are optimized by using seeker optimization algorithm(SOA). Then the multi-objective optimization is converted to the single-objective optimization by specifying the willingness coefficient. The simulation results showed that the proposed interval forecasting method has high accuracy and practical value.

     

/

返回文章
返回