叶进, 卢泉, 王钰淞, 常生强, 陈洪雨, 胡亮青. 基于级联随机森林的光伏故障诊断模型研究[J]. 太阳能学报, 2021, 42(3): 358-362. DOI: 10.19912/j.0254-0096.tynxb.2018-1175
引用本文: 叶进, 卢泉, 王钰淞, 常生强, 陈洪雨, 胡亮青. 基于级联随机森林的光伏故障诊断模型研究[J]. 太阳能学报, 2021, 42(3): 358-362. DOI: 10.19912/j.0254-0096.tynxb.2018-1175
Ye Jin, Lu Quan, Wang Yusong, Chang Shengqiang, Chen Hongyu, Hu Liangqing. RESEARCH ON PV FAULT DIAGNOSIS MODEL BASED ON CASCADED RANDOM FOREST[J]. Acta Energiae Solaris Sinica, 2021, 42(3): 358-362. DOI: 10.19912/j.0254-0096.tynxb.2018-1175
Citation: Ye Jin, Lu Quan, Wang Yusong, Chang Shengqiang, Chen Hongyu, Hu Liangqing. RESEARCH ON PV FAULT DIAGNOSIS MODEL BASED ON CASCADED RANDOM FOREST[J]. Acta Energiae Solaris Sinica, 2021, 42(3): 358-362. DOI: 10.19912/j.0254-0096.tynxb.2018-1175

基于级联随机森林的光伏故障诊断模型研究

RESEARCH ON PV FAULT DIAGNOSIS MODEL BASED ON CASCADED RANDOM FOREST

  • 摘要: 针对环境气象监测数据与光伏电站的历史数据,提出一种基于级联随机森林的光伏组件在线故障诊断模型,从模型的特征变量分析、真实数据集的预处理、模型训练及使用3个方面进行详细描述,最后通过实验验证该方法的有效性和准确性,证明其对光伏电站智能在线故障诊断具有较好的使用价值。

     

    Abstract: Being aimed at environmental meteorological monitoring and the history data of photovoltaic plant,we put forward an on-line fault diagnosis of photovoltaic components based on cascaded random forest. The characteristic description insists of three aspect:characteristic variable analysis,real data set preprocessing,model training and application. Experiment results show the effectiveness and accuracy of our method. This sample is of good reference value for on-line fault diagnosis of intelligent photovoltaic power station.

     

/

返回文章
返回