关鹏, 焦玉勇, 段新胜. 基于RBF神经网络的土体导热系数非线性预测[J]. 太阳能学报, 2021, 42(3): 171-178. DOI: 10.19912/j.0254-0096.tynxb.2018-1118
引用本文: 关鹏, 焦玉勇, 段新胜. 基于RBF神经网络的土体导热系数非线性预测[J]. 太阳能学报, 2021, 42(3): 171-178. DOI: 10.19912/j.0254-0096.tynxb.2018-1118
Guan Peng, Jiao Yuyong, Duan Xinsheng. NON-LINER PREDICTION OF SOIL THERMAL CONDUCTIVITY BASED ON RBF NEURAL NETWORK[J]. Acta Energiae Solaris Sinica, 2021, 42(3): 171-178. DOI: 10.19912/j.0254-0096.tynxb.2018-1118
Citation: Guan Peng, Jiao Yuyong, Duan Xinsheng. NON-LINER PREDICTION OF SOIL THERMAL CONDUCTIVITY BASED ON RBF NEURAL NETWORK[J]. Acta Energiae Solaris Sinica, 2021, 42(3): 171-178. DOI: 10.19912/j.0254-0096.tynxb.2018-1118

基于RBF神经网络的土体导热系数非线性预测

NON-LINER PREDICTION OF SOIL THERMAL CONDUCTIVITY BASED ON RBF NEURAL NETWORK

  • 摘要: 土体导热系数对于浅层地热能、地下空间等的开发利用和地层储能、核废料处置等的设计具有重要意义。在前人研究的基础上,对于同一地区同类型的土体,选取土体中固体、液体和气体的体积分数作为自变量,导热系数为因变量,利用SPSS软件RBF神经网络进行非线性预测。以在文献中收集的红黏土、粉土、高压实膨润土等数据进行计算分析,验证了该方法的优越性。然后用该方法对北京平原区浅层地热能资源地质勘查项目和杭州市萧山区浅层地热能资源调查评价项目中的数据进行了计算和预测,预测结果与实测值的平均相对误差均小于5%。

     

    Abstract: Soil thermal conductivity is of great significance to the development and utilization of shallow geothermal energy and underground space,and the design of reservoir energy storage and nuclear waste disposal. On the basis of previous studies,volume fraction of solid,liquid and gas in soil of the same type in the same region were selected as independent variables and thermal conductivity as dependent variables,and SPSS software RBF neural network was used for nonlinear prediction. The data of high pressure chamber bentonite,red clay and silty sand collected in the literature were calculated and analyzed to verify the superiority of this method. Then the data of the geological exploration project of shallow geothermal energy resources in Beijing plain area and the shallow geothermal energy resource survey and evaluation project in Xiaoshan district of Hangzhou city were calculated and predicted,all the average relative errors of the predicted results to the measured values are less than 5%.

     

/

返回文章
返回