江泽昌, 刘天羽, 江秀臣, 盛戈皞. 智能电网下多时间尺度家庭能量管理优化策略[J]. 太阳能学报, 2021, 42(1): 460-469. DOI: 10.19912/j.0254-0096.tynxb.2018-0740
引用本文: 江泽昌, 刘天羽, 江秀臣, 盛戈皞. 智能电网下多时间尺度家庭能量管理优化策略[J]. 太阳能学报, 2021, 42(1): 460-469. DOI: 10.19912/j.0254-0096.tynxb.2018-0740
Jiang Zechang, Liu Tianyu, Jiang Xiuchen, Sheng Gehao. MULTI-TIME SCALE HOME ENERGY MANAGEMENT OPTIMIZATION STRATERY IN SMART GRID[J]. Acta Energiae Solaris Sinica, 2021, 42(1): 460-469. DOI: 10.19912/j.0254-0096.tynxb.2018-0740
Citation: Jiang Zechang, Liu Tianyu, Jiang Xiuchen, Sheng Gehao. MULTI-TIME SCALE HOME ENERGY MANAGEMENT OPTIMIZATION STRATERY IN SMART GRID[J]. Acta Energiae Solaris Sinica, 2021, 42(1): 460-469. DOI: 10.19912/j.0254-0096.tynxb.2018-0740

智能电网下多时间尺度家庭能量管理优化策略

MULTI-TIME SCALE HOME ENERGY MANAGEMENT OPTIMIZATION STRATERY IN SMART GRID

  • 摘要: 建立负荷在功率约束与需求响应约束下的激励需求响应模型以及含分布式电源、储能与电动汽车的家庭用电模型,在预测模型多时间尺度能量管理的基础上,以最小化用户自身用电费用与买电功率波动的两层目标函数实时优化调整策略。通过实时调整储电池、电动汽车的充放电,从而保证用户购电满足需求相应的要求。最后采用改进的粒子群算法对多时间尺度目标函数进行求解,并且与原始的粒子群算法进行对比,结果表明所提算法可显著降低用户的用电费用与功率波动。

     

    Abstract: With the development of smart grid,interaction between consumers and grid becomes more frequently,Under the condition of satisfying their own economy,users can gain additional economic benefits when they participate in grid demand response. Therefore,multi-time home energy management optimization strategies and optimal scheduling algorithms of considering demand response mechanisms are proposed. Established the model of excitation demand response under power constraint and demand response constraint and the household electricity model with distributed power supply,energy storage and electric vehicle. Based on the multi-scale energy management of the prediction model,the two-layer objective function for real-time optimization adjustment strategy to minimize the user’s own electricity cost and power purchase fluctuations. By adjusting the charge and discharge of storage battery and electric vehicle in real time,the user can purchase electricity to meet the corresponding requirements. Finally,the improved particle swarm optimization(IPSO)algorithm was used to solve the multi-time scale target function and compared with the original PSO,the results show that the proposed algorithm can significantly reduce the power cost and power fluctuation

     

/

返回文章
返回