徐岩, 靳伟佳, 朱晓荣. 基于遗传粒子群算法的光伏并网逆变器参数辨识[J]. 太阳能学报, 2021, 42(7): 103-109. DOI: 10.19912/j.0254-0096.tynxb.2017-0016
引用本文: 徐岩, 靳伟佳, 朱晓荣. 基于遗传粒子群算法的光伏并网逆变器参数辨识[J]. 太阳能学报, 2021, 42(7): 103-109. DOI: 10.19912/j.0254-0096.tynxb.2017-0016
Xu Yan, Jin Weijia, Zhu Xiaorong. PARAMETER IDENTIFICATION OF PHOTOVOLTAIC GRID-CONNECTED INVERTER BASED ON GAPSO[J]. Acta Energiae Solaris Sinica, 2021, 42(7): 103-109. DOI: 10.19912/j.0254-0096.tynxb.2017-0016
Citation: Xu Yan, Jin Weijia, Zhu Xiaorong. PARAMETER IDENTIFICATION OF PHOTOVOLTAIC GRID-CONNECTED INVERTER BASED ON GAPSO[J]. Acta Energiae Solaris Sinica, 2021, 42(7): 103-109. DOI: 10.19912/j.0254-0096.tynxb.2017-0016

基于遗传粒子群算法的光伏并网逆变器参数辨识

PARAMETER IDENTIFICATION OF PHOTOVOLTAIC GRID-CONNECTED INVERTER BASED ON GAPSO

  • 摘要: 在并网光伏发电系统模型基础上,通过分析逆变器控制器结构,确定待辨识参数。提出一种基于遗传粒子群(GAPSO)算法的光伏并网逆变器参数辨识方法,同步辨识各控制参数。辨识结果与遗传算法和粒子群算法辨识结果的对比表明,GAPSO参数优化模型在辨识精度和收敛速度方面具有明显的优越性。最后对参数辨识模型的泛化能力进行评价,比较了3种不同扰动情况下的仿真曲线与测试曲线,验证了模型的适用性和准确性。

     

    Abstract: Based on grid connected PV system model,this paper determined the parameters to be identified by analyzing the structure of inverter controller.A parameter identification method for PV grid connected inverter based on Genetic Particle Swarm Optimization(GAPSO) algorithm was proposed to identify the control parameters synchronously.Meanwhile,Genetic algorithm and particle swarm optimization were used to compare with the results of this paper,and the superiority of GAPSO parameter optimization model in identification precision and convergence speed was confirmed.Finally,we evaluated the generalization ability of the parameter identification model.The simulation curves and measured curves under three different disturbances were compared,which verified the applicability and accuracy of the model.

     

/

返回文章
返回