王亚娥, 刘怀西, 苗得胜, 吴迪. 基于工程尾流模型的风电场发电量评估[J]. 太阳能, 2024, (9): 66-75. DOI: 10.19911/j.1003-0417.tyn20230918.01
引用本文: 王亚娥, 刘怀西, 苗得胜, 吴迪. 基于工程尾流模型的风电场发电量评估[J]. 太阳能, 2024, (9): 66-75. DOI: 10.19911/j.1003-0417.tyn20230918.01
Wang Yae, Liu Huaixi, Miao Desheng, Wu Di. POWER GENERATION CAPACITY EVALUATION OF WIND FARM BASED ON ENGINEERING WAKE MODEL[J]. Solar Energy, 2024, (9): 66-75. DOI: 10.19911/j.1003-0417.tyn20230918.01
Citation: Wang Yae, Liu Huaixi, Miao Desheng, Wu Di. POWER GENERATION CAPACITY EVALUATION OF WIND FARM BASED ON ENGINEERING WAKE MODEL[J]. Solar Energy, 2024, (9): 66-75. DOI: 10.19911/j.1003-0417.tyn20230918.01

基于工程尾流模型的风电场发电量评估

POWER GENERATION CAPACITY EVALUATION OF WIND FARM BASED ON ENGINEERING WAKE MODEL

  • 摘要: 基于WAsP-Park1、WAsP-Park2、Park-Gauss和Bastankhah这4种工程尾流模型,对比了风电场中单一风向下风电机组的风速差异,并分析了工程尾流模型、尾流衰减因子、尾流速度亏损叠加方法、邻近风电场等因素对风电场发电量计算结果的影响。研究结果表明:1)同一风电场中,单一风向下,Park-Gauss模型计算得到的风电机组尾流速度亏损最大,WAsP-Park2模型的次之,WAsP-Park1模型的较小,Bastankhah模型的最小。2)不考虑邻近风电场的影响时,WAsP-Park1模型和WAsP-Park2模型计算得到的目标风电场的尾流损失基本一致;但考虑邻近风电场的影响时,WAsP-Park2模型的计算结果比WAsP-Park1模型的计算结果增大约3%~5%。同一工况下,与WAsP-Park1模型的计算结果相比,Park-Gauss模型的计算结果约为其1.5倍,Bastankhah模型的计算结果约为其0.4倍。3)对任意工程尾流模型而言,同一工况下,尾流衰减因子越小,目标风电场的尾流损失越大;尾流衰减因子每减小0.01,计算得到的目标风电场尾流损失的增幅基本在10%以上。4)当考虑邻近风电场的影响时,对于目标风电场的尾流损失而言,直接求和法的计算结果最大,平方和开根号法的次之,最大值法的最小。因此,对风电场进行发电量评估时,要综合考虑邻近风电场、尾流衰减因子及尾流速度亏损叠加方法的影响。

     

    Abstract: This paper compares the wind speed differences of wind turbines in a wind farm under a single wind direction based on four types of engineering wake models:WAsP-Park1,WAsP-Park2,Park-Gauss,and Bastankhah. It also analyzes the effects of engineering wake models,wake attenuation factors,wake velocity loss superposition methods,neighboring wind farms,and other factors on the calculation results of power generation capacity of wind farm. The research results show that:1) In the same wind farm,under a single wind direction,the Park-Gauss model calculates the maximum wake velocity loss of wind turbines,followed by the WAsP-Park2 model,the WAsP-Park1 model is smaller,and the Bastankhah model is the smallest. 2) When the influence of neighboring wind farms is not considered,the wake losses of the target wind farm calculated by the WAsP-Park1 model and the WAsP-Park2 model are basically the same. However,when considering the impact of neighboring wind farms,the calculation results of the WAsP-Park2 model are about 3% ~5% higher than those of the WAsP-Park1 model. Under the same operating conditions,compared with the calculation results of the WAsP-Park1 model,the calculation results of the Park-Gauss model are about 1.5 times higher,and the calculation results of the Bastankhah model are about 0.4 times higher. 3) For any engineering wake model,under the same operation condition,the smaller the wake attenuation factor,the greater the wake loss of the target wind farm. For every 0.01 decrease in wake attenuation factor,the calculated increase in wake loss of the target wind farm is basically over 10%. 4) When considering the impact of neighboring wind farms,the direct sum method yields the highest calculation result for the wake loss of the target wind farm,followed by the square sum root sign method,and the maximum value method yields the lowest result. Therefore,when evaluating the power generation capacity of wind farms,it is necessary to comprehensively consider the influence of neighboring wind farms,wake attenuation factors,and wake velocity loss superposition methods.

     

/

返回文章
返回