Abstract:
The types and configurations of source-reservoir coupling can be identified based on the shale oil and gas source-reservoir coupling, which provides a basis for the determination of ideas about shale oil and gas exploration and the efficient exploration and development of shale oil and gas. However, until now, shale oil and gas have not introduced by any scholars into a unified evaluation system for the classification of source-reservoir coupling types, which to some extent restricts the exploration and development process of shale oil and gas. In view of this, based on analyzing the source-reservoir configuration characteristics of typical marine and terrestrial shale oil and gas reservoirs in China, the source-reservoir coupling relationship of shale oil and gas is divided into three categories. Moreover, this study makes clear the geological connotations of different source-reservoir coupling types and their mechanisms controlling oil and gas enrichment, and proposes an efficient exploration approach based on the overall evaluation of shale oil and gas in China. The research results suggest that the source-reservoir coupling types of shale oil and gas can be divided into three categories: source-reservoir separation, source-reservoir coexistence, and source-reservoir integration. Specifically, the migration distance of source-reservoir separation hydrocarbons is above meter scale, and the near-source oil and gas forms sweet spots, represented by the Lower Cambrian Qiongzhusi Formation in Sichuan Basin, the first and second submembers of Member 7 of Triassic Yanchang Formation in Ordos Basin, and the Permian Lucaogou Formation in Jimusar sag of Junggar Basin. The source-reservoir coexistence is characterized with the multi-source supply of hydrocarbons and the coexistence of source and reservoir, of which hydrocarbons are migrated into the nearby advantageous reservoirs to make them oil-bearing as a whole, represented by the Member 2 of Permian Wujiaping Formation in Sichuan Basin, the Jurassic Lianggaoshan Formation in Sichuan Basin, and the Member 4 of Paleogene Shahejie Formation in Jiyang depression of Bohai Bay Basin. The source-reservoir integration indicates that the source rock and reservoir are in the same stratum, and hydrocarbons undergo micro migration within the stratum, represented by the Ordovician Wufeng Formation and Silurian Longmaxi Formation in Sichuan Basin and the Cretaceous Qingshankou Formation in Songliao Basin. Sedimentary environment, biogenic silica, thermal maturity, and hydrocarbon generation/expulsion efficiency are the core elements that affect the shale oil and gas source-reservoir configuration and furtherly control the enrichment of shale oil and gas. Taking the typical shale oil and gas reservoirs in China as an example, the paper furtherly clarifies the exploration levels and ideas under the vertical multi-type source-reservoir coupling configuration at different levels of maturity. The research results are beneficial for quickly identifying and optimizing favorable intervals of shale oil and gas, providing an important scientific basis for the efficient exploration and development of shale oil and gas in China.