Abstract:
A study is performed on the reservoir-controlling of strike-slip faults in deep marine carbonate rocks (>4 500 m) in Sichuan Basin, which is of important significance for the efficient exploration and development of gas reservoirs in tight carbonate rocks. Through the analyses of gas reservoirs as well as static and seismic data, investigations are carried out on the temporal and spatial relationship between strike-slip fault and hydrocarbon accumulation, as well as the controlling effects of strike-slip fault on the gas migration, trap and enrichment. The results show that the pre-Mesozoic strike-slip fault system is dispersively distributed and widely developed in the central Sichuan Basin, which had destructive effect on hydrocarbon accumulation in the Caledonian period. However, the petroleum accumulation conditions were superior in the Indonian-Yanshanian period, thus forming the pre-Mesozoic multi-layer superimposed hydrocarbon accumulation system controlled by strike-slip faults. The strike-slip faults constitute the pre-Mesozoic vertical-lateral oil/gas transport system throughout the central Sichuan Basin. The strike-slip fault system has formed two kinds of migration modes, including the near-source lateral fault-controlled petroleum migration in the Upper Sinian-Lower Cambrian carbonate reservoirs, and the far-source vertical petroleum migration of the Middle Permian carbonate reservoirs. This has led to subsequent differentiation in stratified and zonal oil/gas accumulation. In the tight carbonate rocks, the effective structural-lithologic traps are developed under the joint action of high energy microfacies and strike-slip faults, and the both also play a role of controlling the effectiveness of traps, thus forming the gas reservoiring mode of "small gas reservoir but large field" along the strike-slip fault zones. The strike-slip faults control the distribution of the high porosity and high permeability "sweet spots" fracture-vug reservoirs and high-yield wells, which can increase the reserves, and control the hydrocarbon enrichment. The results reveal that there is a pre-Mesozoic deep carbonate strike-slip fault-controlled gas-rich system in the central Sichuan Basin, with the ternary coupling factors of "source-fault-reservoir" that control the gas accumulation; there are differences in controlling gas migration, trapping and enrichment by strike-slip faults; the strike-slip fault-controlled "sweet spot" gas reservoir is a new favorable field for exploration and development of deep carbonate rocks.