Abstract:
Oil and gas are generated from organic matters in the rocks of sedimentary basins. Through an intensive and systematic study of global petroliferous basins, it is recognized that the distribution of global oil and gas fields is highly uneven, and most of oil and gas are enriched and accumulated in a few strata of sedimentary rocks. The distribution of oil and gas is significantly controlled by source rock, so that it is necessary to search for the source rocks initially before discovering new petroliferous basins. The nutrients required for biological growth in the sedimentary basins primarily come from rivers, and the nutrients flowing from rivers into the sedimentary basins control the degree of biological reproduction, and then control the abundance of organic matters in the source rocks, which decides the amount of oil and gas generated and the degree of enrichment of oil and gas resources in the sedimentary basins. Oil and gas are mainly distributed in the three systems on the earth, i.e., the river-lake system, river-gulf system and river-delta system. Specifically, the river-lake system is an important oil-bearing area on the earth. Lacustrine oil is mainly produced by sedimentary organic matters from the algae died in lakes. The growth of algae depends mainly on the nutrients that come from the rivers and flow into the lakes, and these nutrients can facilitate the growth of algae in the rift period and provide a guarantee for the formation of high-quality source rocks. The river-gulf system is the main distribution location of global marine oil. Gulfs are the estuary of rivers, which brings abundant minerals for rivers to promote the growth and proliferation of algae and other aquatic organisms; moreover, the gulfs are relatively isolated, which are conducive to the preservation of organic matters. In fact, boasting of the biggest reserves, the coal-type gas generated from coal-measure source rocks is the most widely distributed in the world and is mainly distributed in the river-delta system. The sediments brought by the river provide fertile soil for the growth of higher plants, and the native higher plants on the river-delta plain provide a solid material basis for the formation of coal-measure gas source rocks. The delta stratum reservoir is well developed with good reservoir-caprock configuration, which is beneficial for natural gas enrichment and accumulation.