吴千鹏, 尹立, 李兴荣, 孙羽, 黄开龙, 苏春芳, 王式功. 季风转换对深圳地区呼吸系统疾病的影响及预测研究[J]. 沙漠与绿洲气象, 2023, 17(6): 32-40.
引用本文: 吴千鹏, 尹立, 李兴荣, 孙羽, 黄开龙, 苏春芳, 王式功. 季风转换对深圳地区呼吸系统疾病的影响及预测研究[J]. 沙漠与绿洲气象, 2023, 17(6): 32-40.
WU Qianpeng, YIN Li, LI Xingrong, SUN Yu, HUANG Kailong, SU Chunfang, WANG Shigong. Study of the Influence of Monsoon Change on Respiratory Patients and the Prediction Model in Shenzhen Area[J]. Desert and Oasis Meteorology, 2023, 17(6): 32-40.
Citation: WU Qianpeng, YIN Li, LI Xingrong, SUN Yu, HUANG Kailong, SU Chunfang, WANG Shigong. Study of the Influence of Monsoon Change on Respiratory Patients and the Prediction Model in Shenzhen Area[J]. Desert and Oasis Meteorology, 2023, 17(6): 32-40.

季风转换对深圳地区呼吸系统疾病的影响及预测研究

Study of the Influence of Monsoon Change on Respiratory Patients and the Prediction Model in Shenzhen Area

  • 摘要: 利用深圳地区2015—2016年呼吸系统疾病就诊人数资料及同期气象和污染物资料,并运用BP人工神经网络和LSTM网络构建呼吸系统疾病就诊人数预测模型。结果显示:每年9月开始,冬季风的冷胁迫效应使相关人群呼吸系统疾病发病人数波动式增加,直至次年冬季风向夏季风转换前的3月发病人数达到峰值;夏季风控制期间当地居民呼吸系统疾病发病人数呈波动式减少,比峰值期间减少35%;在不同季风控制期间不同呼吸系统疾病其主控因素也不相同;对比两种预测模型,总体上LSTM网络预报模型对深圳下呼吸道疾病风险预测准确率更高,可以满足健康气象预报服务业务需求。

     

    Abstract: This paper used the data on the number of patients with respiratory disease、meteorological factors and pollutant concentration from 2015 to 2016 to construct a prediction model for the admission visits from respiratory disease by using BP artificial neural network and LSTM network.The results showed that the cold stress effect of winter monsoon would increase the incidence of respiratory diseases in related populations fluctuating from September to the peak of March before the transition from winter wind to summer wind in the following year.During the summer wind control period,the incidence of respiratory diseases among local residents fluctuated and decreased,which was 35% lower than that during the peak period.In addition,the main control factors of respiratory diseases were different. Compared with the two prediction models,on the whole,the LSTM network forecasting model has a higher accuracy rate in predicting the risk of respiratory diseases in Shenzhen,which can meet the business needs of health weather forecasting services.

     

/

返回文章
返回