任秋兵, 李明超, 沈扬, 李明昊. 耦合时空相关特性的大坝变形动态监控模型[J]. 水力发电学报, 2021, 40(10): 160-172.
引用本文: 任秋兵, 李明超, 沈扬, 李明昊. 耦合时空相关特性的大坝变形动态监控模型[J]. 水力发电学报, 2021, 40(10): 160-172.
REN Qiu-bing, LI Ming-chao, SHEN Yang, LI Ming-hao. Dynamic monitoring model for dam deformation with spatiotemporal coupling correlation characteristics[J]. JOURNAL OF HYDROELECTRIC ENGINEERING, 2021, 40(10): 160-172.
Citation: REN Qiu-bing, LI Ming-chao, SHEN Yang, LI Ming-hao. Dynamic monitoring model for dam deformation with spatiotemporal coupling correlation characteristics[J]. JOURNAL OF HYDROELECTRIC ENGINEERING, 2021, 40(10): 160-172.

耦合时空相关特性的大坝变形动态监控模型

Dynamic monitoring model for dam deformation with spatiotemporal coupling correlation characteristics

  • 摘要: 大坝变形性态是多种因素长期共同作用的结果,其演变模式包括时间和空间两个维度。然而,当前大坝变形智能建模较少综合考虑时空二维特征,原型观测资料中蕴含的大量时空信息亟待进一步挖掘。针对该问题,本文从单测点时序相关性和多测点空间关联性出发,提出构建一种耦合时空两个维度相关特性的大坝变形动态监控模型。该模型将门控循环单元(gated recurrent unit,GRU)神经网络作为核心层,建模学习历史变形数据内在时变规律,通过迭代提取有效变形因子来构造空间维度特征,并引入软注意力机制改进GRU隐藏状态的概率权重分配规则,实现对关键信息的自适应学习。以丰满混凝土重力坝多测点变形监测数据为例,验证了该模型的有效性。结果表明,所提出的监控模型能准确模拟大坝变形动态演变过程,且与常规监控模型相比,其外推预测精度更高,为大坝安全监控提供了新的方法和手段。

     

    Abstract: Dam deformation behavior is a consequence of long-term interaction of many factors, and its evolution pattern usually involves two dimensions: time and space. However, previous intelligent modeling of dam deformation lacks a comprehensive consideration of time and space variations, and a large amount of spatiotemporal information needs to be further excavated from the prototype observation data. This paper develops a dynamic monitoring model for dam deformation with spatiotemporal coupling correlation characteristics from two view angles: time-series correlation for a single measurement point,and spatial correlation of multiple measurement points. This model takes the gated recurrent unit(GRU)neural networks as core layers to model and learn the inherent time-varying patterns in a historical deformation data series, and constructs the features of spatial variations through iterative extraction of effective deformation factors. It uses a soft attention mechanism to improve the probability weight allocation rule of the GRU hidden states, thus achieving adaptive learning of key information. Its effectiveness is verified in a case study of the Fengman concrete gravity dam. The results show that this monitoring model can accurately simulate the dynamic deformation evolution of a dam, and are more accurate in extrapolation prediction than conventional monitoring models.

     

/

返回文章
返回