Characteristic Emission Spectrum and Discharge Degree Identification of SF6 Under Corona Discharge
-
摘要: 电晕放电是局部放电的典型形式,长时间电晕放电会引起电气设备的绝缘老化,甚至导致设备在正常运行电压下发生击穿。SF6气体的强电负性致使低电压或高气压放电条件下的光谱信号极其微弱,为此,提出一种特征谱带光信号增强的方式,选取可表征局部放电SF6气体特征光谱,采用窄带滤光片+光电倍增管的方式,增强特征谱段的光信号,以提高信噪比。首先,模拟黄铜、不锈钢、铝等不同电极材料下的针-板电晕放电,结合SF6气体的电离分解机理,分析表征电晕放电的激发辐射的粒子特征谱带及其成因。其次,根据特征谱带选取窄带滤光片、光电倍增管、透镜等光学器件并搭建光脉冲信号检测平台,增强特征谱段的光信号响应。最后,在对比分析不同放电阶段光信号特点的基础上,提出识别放电严重程度的指标及阈值,并通过高气压电晕放电实验进行有效性验证。本文可为SF6气体绝缘电气设备的局部放电检测及识别提供参考。Abstract: Corona discharge is one of typical partial discharge defects. Long-term corona discharge will cause insulation aging of electrical equipment,and even lead to breakdown of equipment under normal operating voltage. The strong electronegativity of SF6 gas results in extremely weak spectral signals under low-voltage or high-pressure discharge conditions. Therefore,a method for enhancing the characteristic optical signal is proposed. In this method,according to the characteristic emission spectra of SF6 under corona discharge,the narrow-band filter and a photomultiplier tube are used to enhance optical signal,so as to increase the signal-to-noise ratio(S/N). First,a series of needle-plate corona discharge experiments with different electrode materials such as brass,stainless steel,and aluminum are carried out,and the characteristic spectral band and genesis of the excited radiation particla during the discharge process is analyzed,combined with the mechanism of SF6 gas ionizing. Then,optical devices such as narrow-band filter,photomultiplier tube,and lenses are selected according to the characteristic spectral band,and an optical pulse signal detection platform is built,so as to enhance the characteristic optical signal. Finally,according to the characteristics of the optical signal during corona discharge,indicators and thresholds for identifying the discharge degree are proposed. Corona discharge experiments under high pressures verify the proposed indicators. A reference is provided in this paper for the detection and identification of partial discharge in SF6 gas-insulated electrical equipment.
-
[1] 潘长明,刘刚,熊炬,等.高压开关柜绝缘事故的分析及防范措施[J].高压电器,2011,47(7):90-93. PAN Changming,LIU Gang,XIONG Ju,el al. High voltage switchgear insulation accident’s analysis and countermeasures[J].High Voltage Apparatus,2011,47(7):90-93.
[2] REN M,DONG M,LIU J.Statistical analysis of partial discharges in SF6gas via optical detection in various spectral ranges[J].Energies,2016,9:152.
[3] FUJII K,YAMADA M,TANAKA A,et al. Emission-spectrum of partial discharge light in SF6gas[C]//Conf. Record of the IEEE International Symposium on Electrical Insulation,1992:332-335.
[4] YOSHIDA S,KOJIMA H,HAYAKAWA N,et al. Light emission spectrum depending on propagation of partial discharge in SF6[M]. Conference Record of the 2008 IEEE International Symposium on Electrical Insulation,2008:365-368.
[5] BARTNIK A,WACHULAK P,FIEDOROWICZ H,et al. EUV induced low temperature SF6-based plasma[J].Journal of Instrumentation,2016,11:11.
[6] REN M,SONG B,ZHUANG T,et al. Optical partial discharge diagnostic in SF6gas insulated system via multi-spectral detection[J].ISA Transactions,2018,75:247-257.
[7] 李彦飞,汤贝贝,韩冬,等.SF6放电的发射光谱特性分析与放电识别.电工技术学报,2022,37(7):1 866-1 874. LI Yanfei,TANG Beibei,HAN Dong,et al.Spectroscopy analysis of emission spectrum characteristics and discharge recognition of SF6gas discharge[J].Transactions of China Electrotechnical Society,2022,37(7):1 866-1 874.
[8] 汤贝贝,韩冬,李彦飞,等.基于特征发射光谱的SF6电晕放电检测[J].电工电能新技术,2022,41(8):71-78. TANG Beibei,HAN Dong,LI Yanfei,et al. SF6needle-plate corona discharge detection based on characteristic emission spectrum[J]. Advanced Technology of Electrical Engineering,2022,41(8):71-78.
[9] BINNS D F,MUFTI A H,MALIK N H.Optical discharge detection in SF6-insulated systems[J]. IEEE Transactions on Electrical Insulation,1990,25(2):405-414.
[10] HAYAKAWA N,HATTA K,OKABE S,et al.Streamer and leader discharge propagation characteristics leading to breakdown in electronegative gases[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2006,13(4):842-849.
[11] 韩旭涛,刘泽辉,李军浩,等.基于光电复合传感器的GIS局放检测方法研究[J].中国电机工程学报,2018,38(22):6 760-6 769. HAN Xutao,LIU Zehui,LI Junhao,et al. Study on PD detection method in GIS based on the optical and UHF integrated sensor[J].Proceedings of the CSEE,2018,38(22):6 760-6 769.
[12] 唐炬,曾福平,范庆涛,等.基于荧光光纤检测GIS局部放电的多重分形谱识别[J].高电压技术,2014,40(2):465-473. TANG Ju,ZENG Fuping,FAN Qingtao,et al.Multifractal spectrum identification of partial discharge in GIS based on fluorescence optical fiber detection[J].High Voltage Engineering,2014,40(2):465-473.
[13] SARANI A,NIKIFOROV A Y,LEYS C. Atmospheric pressure plasma jet in Ar and Ar/H2O mixtures:Optical emission spectroscopy and temperature measurements[J].Physics of Plasmas,2010,17(6):063 504.
[14] BENSTAALI B,BOUBERT P,CHERON B G,et al. Density and rotational temperature measurements of the OH°and NO°radicals produced by a gliding arc in humid air[J].Plasma Chemistry and Plasma Processing,2002,22(4):553-571.
[15] 严建华,戴尚莉,李晓东,等.气液两相滑动弧放电中自由基的光谱研究[J].光谱学与光谱分析,2008(8):1 851-1 855. YAN Jianhua,DAI Shangli,LI Xiaodong,et al. Emission spectroscopy diagnosis of the radicals generated in gas-liquid phases gliding arc discharge[J]. Spectroscopy and Spectral Analysis,2008(8):1 851-1 855.
[16] 郑经国,计子华,余兴.原子发射光谱分析技术及应用[M].北京:化学工业出版社,2009. [17] LI H,WU X,LI C,et al.Study of spatial and temporal evolution of Ar and F atoms in SF6/Ar microsecond pulsed discharge by optical emission spectroscopy[J].Plasma Science and Technology,2019,21(7):65-72.
[18] CASANOVAS A M,CASANOVAS J,DUBROCA V,et al.Opticaldetection of corona discharges in SF6,CF4,and SO2under DC and50Hz AC voltages[J].Journal of Applied Physics,1991,70:1 220-1 226.
[19] VAN BRUNT R J,HERRON J T. Fundamental processes of SF6decomposition and oxidation in glow and corona discharge[J].IEEE Trans.on Electrical Insulation,1990,25(1):75-94.
[20] 林济铿,任怡睿,闪鑫,等.基于Logistic回归深层神经网络的电力系统故障概率诊断[J].天津大学学报:自然科学与工程技术版,2021,54(2):186-195. LIN Jikeng,REN Yirui,SHAN Xin,et al. Power system fault probability diagnosis based on the Logistic regression deep neural network[J].Journal of Tianjin University(Science and Technology),2021,54(2):186-195.
计量
- 文章访问数: 0
- HTML全文浏览量: 0
- PDF下载量: 0