杨祎, 崔其会, 秦佳峰, 郑文杰, 乔木. 改进BERT的故障案例智能匹配方法[J]. 山东电力技术, 2022, 49(2): 47-53.
引用本文: 杨祎, 崔其会, 秦佳峰, 郑文杰, 乔木. 改进BERT的故障案例智能匹配方法[J]. 山东电力技术, 2022, 49(2): 47-53.
YANG Yi, CUI Qi-hui, QIN Jia-feng, ZHENG Wen-jie, QIAO Mu. Intelligent Matching Method for Fault Cases Based on Improve BERT[J]. Shandong Electric Power, 2022, 49(2): 47-53.
Citation: YANG Yi, CUI Qi-hui, QIN Jia-feng, ZHENG Wen-jie, QIAO Mu. Intelligent Matching Method for Fault Cases Based on Improve BERT[J]. Shandong Electric Power, 2022, 49(2): 47-53.

改进BERT的故障案例智能匹配方法

Intelligent Matching Method for Fault Cases Based on Improve BERT

  • 摘要: 随着工业界的快速发展,电网输变电设备日常检修维护工作中积累了大量设备故障案例检修记录,文本匹配技术从大量的故障案例数据中挖掘出与目标故障案例相似度高的案例,对现场运检人员遇到新故障时快速判断和检修决策具有重要参考价值。当前,大多数文本匹配的方法都是通过构建卷积神经网络(Convolutional Neural Networks,CNN)、长短期记忆网络(Long Short-Term Memory,LSTM)模型来计算文本之间的相似度,忽略了海量无标签文本数据中潜在的深层语义信息。因此,构建一种新型的文本匹配模型将相似案例匹配问题转化为句子对的二分类问题,利用改进的预训练语言模型(Bidirectional Encoder Representations from Transformers,BERT)提取句子对的深层语义特征,进而接入分类模型捕获句子对的语义相似度。试验表明所提出的方法在故障相似案例数据上相比于CNN、LSTM有更高的匹配准确率。

     

    Abstract: With the rapid development of industry,a large number of equipment fault case maintenance records have been accumulated in the daily maintenance of power transmission and transformation equipment.Text matching technology mines cases with high similarity with the target fault case from a large number of fault case data,which has important reference value for on-site operation and inspection personnel to quickly judge and make maintenance decisions in case of new faults. Most current text matching methods calculate the similarity between texts by constructing convolutional neural networks(CNN)and long short term memory(LSTM)models,ignoring the potential deep semantic information in massive unlabeled text data.A new text matching model was constructed to transform the matching problem of similar cases into the binary classification problem of sentence pairs.The deep semantic features of sentence pairs were extracted by using the improved pre training language model.Moreover,the semantic similarity of sentence pairs was captured by accessing the classification model. Experiments show that the proposed method has higher matching accuracy than CNN and LSTM on similar fault case data.

     

/

返回文章
返回