恩格贝, 张岩. 碳达峰碳中和背景下中国西部用电需求预测研究[J]. 山东电力技术, 2024, 51(8): 36-48. DOI: 10.20097/j.cnki.issn1007-9904.2024.08.005
引用本文: 恩格贝, 张岩. 碳达峰碳中和背景下中国西部用电需求预测研究[J]. 山东电力技术, 2024, 51(8): 36-48. DOI: 10.20097/j.cnki.issn1007-9904.2024.08.005
EN Ge-bei, ZHANG Yan. Research on Electricity Demand Prediction in Western China Under the Background of Carbon Peaking and Carbon Neutrality[J]. Shandong Electric Power, 2024, 51(8): 36-48. DOI: 10.20097/j.cnki.issn1007-9904.2024.08.005
Citation: EN Ge-bei, ZHANG Yan. Research on Electricity Demand Prediction in Western China Under the Background of Carbon Peaking and Carbon Neutrality[J]. Shandong Electric Power, 2024, 51(8): 36-48. DOI: 10.20097/j.cnki.issn1007-9904.2024.08.005

碳达峰碳中和背景下中国西部用电需求预测研究

Research on Electricity Demand Prediction in Western China Under the Background of Carbon Peaking and Carbon Neutrality

  • 摘要: 碳达峰碳中和战略背景下,以高耗能产业为主导的中国西部地区必须实现能源结构、能源强度以及产业结构优化调整,大力发展新型电力系统,实现清洁化转型。在此背景下,受多重动态因素影响的电力消费演变过程不确定性增强。因此,急需一种结合“3060”目标背景准确预测西部电力消费演化过程的方法。首先建立西部地区基于碳达峰碳中和目标的电力消费预测影响因素指标体系,该体系能够帮助神经网络模型适应长期负荷预测中由于政治经济事件带来的不确定性;其次,提出相应的中国西部用电需求预测组合模型,该模型一方面综合了传统用电消费预测改进模型的优点,增强了组合模型对碳达峰碳中和目标下影响因素的适用性。另一方面,所提出的双向门控循环单元和长短期记忆(bi-directional gated recurrent unit and long-short term memory,BiGRU-LSTM)模型充分利用了双向门控循环单元(bi-directional gated recurrent unit,BiGRU)模型双向时序特征提取的能力和长短期记忆(long-short term memory,LSTM)网络对时间序列预测的适用性等优点,极大提高了预测精度;最后,预测西部宁夏地区碳达峰碳中和目标下不同场景的用电消费演化过程,并对模型进行了综合评价。根据预测结果,对当地实现“3060”目标给出具体建议。

     

    Abstract: Under the strategies of "Carbon peaking" and "Carbon neutrality," the high energy-consuming industries in western China must optimize their energy intensity and industrial structure,vigorously develop new energy systems,and achieve clean transformation.In this context,the uncertainty of the evolution process of electricity consumption,which is influenced by multiple dynamic factors,has increased.Therefore,there is an urgent need to predict the evolution process of electricity consumption in the western region in the context of the "3060" target.Firstly,an index system for predicting electricity consumption in the western region is established based on the carbon peak and carbon neutrality targets.This system helps neural network models adapt to the uncertainty in long-term load forecasting due to political and economic events.Secondly,a corresponding combined forecasting model for electricity demand in western China is proposed.On the one hand,this model integrates the advantages of traditional electricity consumption forecasting improvement models,enhancing the applicability of the combined model to factors affecting carbon peak and carbon neutrality targets.On the other hand,the bial gated recurrent unit and long-short term memory(BiGRULSTM)neural network model proposed in this paper takes full advantage of the bidirectional time series feature extraction capability of the bi-directional gated recurrent unit(BiGRU)model and the applicability of the long-short term memory(LSTM)network to time series prediction,greatly improving the prediction accuracy.Finally,the electricity consumption evolution under different scenarios in the western Ningxia region under the carbon peak and carbon neutrality targets is predicted,and the model is comprehensively evaluated.Based on the prediction results,specific suggestions are provided for achieving the "3060" targets in the local area.

     

/

返回文章
返回