吕秋霞, 孙亮, 车延华, 于全喜. 基于深度置信网络的配电网负荷预测[J]. 山东电力技术, 2023, 50(8): 20-26. DOI: 10.20097/j.cnki.issn1007-9904.2023.08.003
引用本文: 吕秋霞, 孙亮, 车延华, 于全喜. 基于深度置信网络的配电网负荷预测[J]. 山东电力技术, 2023, 50(8): 20-26. DOI: 10.20097/j.cnki.issn1007-9904.2023.08.003
LU: Qiu-xia, SUN Liang, CHE Yan-hua, YU Quan-xi. Load Forecasting of Distribution Network Based on Deep Belief Networks[J]. Shandong Electric Power, 2023, 50(8): 20-26. DOI: 10.20097/j.cnki.issn1007-9904.2023.08.003
Citation: LU: Qiu-xia, SUN Liang, CHE Yan-hua, YU Quan-xi. Load Forecasting of Distribution Network Based on Deep Belief Networks[J]. Shandong Electric Power, 2023, 50(8): 20-26. DOI: 10.20097/j.cnki.issn1007-9904.2023.08.003

基于深度置信网络的配电网负荷预测

Load Forecasting of Distribution Network Based on Deep Belief Networks

  • 摘要: 保证配电网负荷数据的完整性是后续数据统计和业务分析的数据基础。针对广州大学城配电网存在的电表年久失修或电表读数错误而导致的配电网负荷数据缺失问题,提出一种基于深度置信网络(Deep Belief Networks,DBN)的配电网负荷预测算法,通过时间序列预测的方法,对缺失的数据进行补齐,保证配电网数据的完整性。深度置信网络由一定数目的受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)叠加而成,通过无监督训练算法得到网络模型的初始值,最后通过自上而下的有监督学习得到预测训练模型。为了避免训练模型的局部最优问题,提高训练模型的全局搜索能力,使用粒子群优化算法对模型进行调优,以获得全局最优解。最后,通过比较多个预测训练模型的预测指标,验证了提出预测训练模型的准确性和有效性。

     

    Abstract: Ensuring the integrity of the distribution network load data is the basis for data statistics and business analysis.A load forecasting algorithm based on deep belief networks was proposed to solve the problem of Guangzhou University Town load data missing caused by long-time disrepair of meters or wrong reading of meters.This algorithm estimates missing values to make sure the stable running of power system by the model of time series forecasting. The deep belief networks which is composed of a certain number of restricted Boltzmann machine obtains the initial value of the network model by unsupervised training algorithm.Finally,the prediction training model was obtained by top-down supervised learning.So as to improve the global search ability of the training model to avoid falling into a local optimal solution,the particle swarm optimization algorithm was used to optimize the model to obtain the global optimal solution. By comparing the prediction indexes of several prediction training models,the accuracy and effectiveness of the proposed prediction model were verified.

     

/

返回文章
返回