马艳, 车永强, 韩英昆, 马雷. 基于研究热度的电力科技期刊专题策划方法研究[J]. 山东电力技术, 2023, 50(6): 63-68. DOI: 10.20097/j.cnki.issn1007-9904.2023.06.011
引用本文: 马艳, 车永强, 韩英昆, 马雷. 基于研究热度的电力科技期刊专题策划方法研究[J]. 山东电力技术, 2023, 50(6): 63-68. DOI: 10.20097/j.cnki.issn1007-9904.2023.06.011
MA Yan, CHE Yong-qiang, HAN Ying-kun, MA Lei. Topic Planning of Sci-tech Journals in Electric Engineering Field Based on Academic Popularity[J]. Shandong Electric Power, 2023, 50(6): 63-68. DOI: 10.20097/j.cnki.issn1007-9904.2023.06.011
Citation: MA Yan, CHE Yong-qiang, HAN Ying-kun, MA Lei. Topic Planning of Sci-tech Journals in Electric Engineering Field Based on Academic Popularity[J]. Shandong Electric Power, 2023, 50(6): 63-68. DOI: 10.20097/j.cnki.issn1007-9904.2023.06.011

基于研究热度的电力科技期刊专题策划方法研究

Topic Planning of Sci-tech Journals in Electric Engineering Field Based on Academic Popularity

  • 摘要: 内容质量是关系科技期刊影响力的重要因素。将科技期刊选题指向学术研究前沿,注重选题的前瞻性和创新性,是提高期刊影响力的关键。目前科技期刊多通过对特定领域、特定目标的数据进行统计分析,或者专家推荐来确定主题,缺少通用可行的选题策划和预测模型。设计一种基于研究热度的电力科技期刊专题策划方法,利用深度森林算法对主题词热度和论文影响力数据进行多粒度特征扫描和级联集成学习,对电力科技期刊的选题词汇进行预测,为未来一段时间的电力科技期刊选题提供建议。实验表明:与深度神经网络和随机森林相比,提出的基于深度森林模型的科技期刊选题方法具有更小的预测误差,且训练时间在可接受的时间范围内;随着训练数据量的增加,算法的预测误差呈现缩小趋势,并对预测短周期时间内的选题词汇更加有效。

     

    Abstract: Content quality is an important factor for journal impacts.Sci-tech journals choose the forefront of academic study as their publishing topic,and the perspectiveness and innovation of topics will be crucial for journals to increase influence. At present most journals determine their topics through expert recommendation or simple statistical analysis on specific objective in specific field,which lacks the universal and feasible topic planning and prediction model.A topic planning method of sci-tech journals in electric engineering field based on academic popularity was proposed.The deep forest model was used to analyze the popularity data of topic words and influential data of papers.The prediction model consists of multi-grained feature scanning and cascading ensemble learning,which provides advice of choosing topics for sci-tech journals in electric engineering field.Experimental results shows that the proposed topic planning method based on deep forest has an acceptable training time and its average value of prediction errors is the lowest compared with deep neural network and random forest algorithm.

     

/

返回文章
返回